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ABSTRACT
Dynamic taint analysis is gaining momentum. Techniques based
on dynamic tainting have been successfully used in the context of
application security, and now their use is also being explored in dif-
ferent areas, such as program understanding, software testing, and
debugging. Unfortunately, most existing approaches for dynamic
tainting are defined in an ad-hoc manner, which makes it difficult
to extend them, experiment with them, and adapt them to new con-
texts. Moreover, most existing approaches are focused on data-flow
based tainting only and do not consider tainting due to control flow,
which limits their applicability outside the security domain. To
address these limitations and foster experimentation with dynamic
tainting techniques, we defined and developed a general framework
for dynamic tainting that (1) is highly flexible and customizable, (2)
allows for performing both data-flow and control-flow based taint-
ing conservatively, and (3) does not rely on any customized run-
time system. We also presentDYTAN , an implementation of our
framework that works on x86 executables, and a set of preliminary
studies that show howDYTAN can be used to implement different
tainting-based approaches with limited effort. In the studies, we
also show thatDYTAN can be used on real software, by using FIRE-
FOX as one of our subjects, and illustrate how the specific char-
acteristics of the tainting approach used can affect efficiency and
accuracy of the taint analysis, which further justifies the use of our
framework to experiment with different variants of an approach.

Categories and Subject Descriptors:D.2.5 [Software Engineer-
ing]: Testing and Debugging;

General Terms: Experimentation, Security

Keywords: Dynamic tainting, information flow, general framework

1. INTRODUCTION
Dynamic taint analysis (also known as dynamic information flow

analysis) consists, intuitively, in marking and tracking certain data
in a program at run-time. This type of dynamic analysis is be-
coming increasingly popular. In the context of application secu-
rity, dynamic-tainting approaches have been successfully used to
prevent a wide range of attacks, including buffer overruns (e.g., [8,
17]), format string attacks (e.g., [17, 21]), SQL and command in-
jections (e.g., [7, 19]), and cross-site scripting (e.g., [18]). More
recently, researchers have started to investigate the use of tainting-
based approaches in domains other than security, such as program
understanding, software testing, and debugging (e.g., [11, 13]).
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Unfortunately, most existing techniques and tools for dynamic
taint analysis are defined in an ad-hoc manner, to target a specific
problem or a small class of problems. It would be difficult to ex-
tend or adapt such techniques and tools so that they can be used in
other contexts. In particular, most existing approaches are focused
on data-flow based tainting only, and do not consider tainting due
to the control flow within an application, which limits their general
applicability. Also, most existing techniques support either a sin-
gle taint marking or a small, fixed number of markings, which is
problematic in applications such as debugging. Finally, almost no
existing technique handles the propagation of taint markings in a
truly conservative way, which may be appropriate for the specific
applications considered, but is problematic in general. Because de-
veloping support for dynamic taint analysis is not only time con-
suming, but also fairly complex, this lack of flexibility and gener-
ality of existing tools and techniques is especially limiting for this
type of dynamic analysis.

To address these limitations and foster experimentation with dy-
namic tainting techniques, in this paper we present a framework for
dynamic taint analysis. We designed the framework to be general
and flexible, so that it allows for implementing different kinds of
techniques based on dynamic taint analysis with little effort. Users
can leverage the framework to quickly develop prototypes for their
techniques, experiment with them, and investigate trade-offs of dif-
ferent alternatives. For a simple example, the framework could be
used to investigate the cost effectiveness of considering different
types of taint propagation for an application.

Our framework has several advantages over existing approaches.
First, it is highly flexible and customizable. It allows for easily
specifying which program data should be tainted and how, how taint
markings should be propagated at run-time, and where and how
taint markings should be checked.Second, it allows for performing
data-flow and both data-flow and control-flow based tainting.Third,
from a more practical standpoint, it works on binaries, does not
need access to source code, and does not rely on any customized
hardware or operating system, which makes it broadly applicable.

We also presentDYTAN , an implementation of our framework
that works on x86 binaries, and a set of preliminary studies per-
formed usingDYTAN . In the first set of studies, we report on our
experience in usingDYTAN to implement two tainting-based ap-
proaches presented in the literature. Although preliminary, our ex-
perience shows that we were able to implement these approaches
completely and with little effort. The second set of studies illus-
trates how the specific characteristics of a tainting approach can
affect efficiency and accuracy of the taint analysis. In particular, we
investigate how ignoring control-flow related propagation and over-
looking some data-flow aspects can lead to unsafety. These results
further justify the usefulness of experimenting with different varia-
tions of dynamic taint analysis and assessing their tradeoffs, which
can be done with limited effort using our framework. The second
set of studies also shows the practical applicability ofDYTAN , by
successfully running it on the FIREFOX web browser.
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The contributions of this paper are:

• The definition of a generic framework for dynamic taint analysis
that (1) suitably handles information flow due to data and control
flow within a program and (2) allows for customizing the analysis
along several dimensions.

• A tool, DYTAN , that implements our framework for x86 executa-
bles, works at the application level, and does not require any spe-
cial support from the runtime system.

• A set of studies that provide initial evidence of the generality of
our framework, its applicability, and the potential usefulness of
experimenting with different variations of dynamic taint analysis.

The rest of the paper is organized as follows. We provide back-
ground information and motivation for the work in Section 2. Sec-
tion 3 discusses related work. Section 4 presents our approach and
the tool that implements our approach. We discuss our empirical
evaluation of the approach in Section 5. Finally, we conclude and
discuss future-work directions in Section 6.

2. BACKGROUND AND MOTIVATION
In this section, we present background information on dynamic

tainting and a set of examples that we use throughout the paper.
Intuitively, dynamic tainting tracks the information flow within a
program by (1) associating one or more markings with some data
values in the program and (2) propagating these markings as data
values flow through the program during execution. Consider, for
instance, the simple example in Figure 1. Imagine that we tainted
the variablesa at line 2 andb at line 3 with taint markingsta and
tb, respectively. In such a case, we would expect, at the end of the
execution, that the taint markings associated with variablesx, y,
andz would consist of sets{ta}, {tb}, and{ta, tb}, respectively.
Taint markingta, initially associated witha, would be associated
with w becausea’s value is used to computew. Analogously, mark-
ing ta would be associated withy because the value ofw, which is
now tainted withta, is used to computey. The propagation of taint
markings for the remaining variables is analogous.

1 i n t a , b , w, x , y , z ;
2 a = 11 ;
3 b = 5 ;
4 w = a ∗ 2 ;
5 x = b + 1 ;
6 y = w + 1 ;
7 z = x + y ;

Figure 1: Example code that contains explicit information flow.

In this example, taint propagation occurs because ofexplicit in-
formation flow, that is, direct involvement of a tainted variable in
the computation of another variable’s value. Explicit information
flow can also be described as propagation that occurs due to data
flow or data dependences1 in the code (e.g., there is a data-flow
chain betweeny anda).

A less intuitive cause of propagation isimplicit information flow,
which refers to situations in which a tainted data value affects the
value of another variable indirectly. Whereas explicit information
flow is related to data dependencies, implicit information flow is
typically due to control dependences2 in the code. For an exam-
ple, consider the code in Figure 2(a) and assume that we tainted the

1A statements2 is data dependent on a statements1 if (1) s2 uses a
variablev that is defined ins1 and (2) there is a def-clear path with
respect tov betweens1 ands2.
2Informally, a statements2 is control dependent on a statements1

if (1) s1 contains a predicate, and (2) depending on the outcome of
s1, s2 may not to be executed.

value of parametera at line 1 with taint markingta. Althougha’s
value is not involved in the computation ofx, it nevertheless af-
fectsx’s value through a control dependence: the outcome of the
predicate at line 3 decides whether line 4 or line 7 will be exe-
cuted. Therefore, the value ofx at the end of the execution should
be tainted with markingta. Conversely, variabley would not be
tainted because its value does not depend ona’s value in any way.

1 vo id foo ( i n t a ) {
2 i n t x , y ;
3 i f ( a > 10) {
4 x = 1 ;
5 }
6 e l s e {
7 x = 2 ;
8 }
9 y = 10 ;

10 p r i n t ( x ) ;
11 p r i n t ( y ) ;
12 }

( a )

1 vo id foo ( i n t a ) {
2 i n t x , y ;
3 x = 2 ;
4 i f ( a > 10) {
5 x = 1 ;
6 }
7 y = 10 ;
8 p r i n t ( x ) ;
9 p r i n t ( y ) ;

10 }

( b )

Figure 2: Example code that contains implicit information flow.

Note that there are even subtler cases of implicit information
flow. For example, consider the code in Figure 2(b), which is se-
mantically equivalent to the code in Figure 2(a) but does not contain
anelse branch for theif statement at line 4. Assume that we in-
voke procedurefoo asfoo(2). In this case, the predicate (now at
line 4) would still affect the value ofx. However, this information
flow would be difficult to identify by simply observing the execu-
tion becausex is defined before the predicate is computed and is
not redefined afterward.

As we discuss in detail in Section 4, our approach takes into ac-
count both explicit and implicit information flow in a conservative
way, so allowing the user to perform an accurate and safe dynamic
taint analysis. Before describing our approach, we present some
applications of dynamic taint analysis that could benefit from our
framework and discuss related work.

3. RELATED WORK
There is a good deal of related work for our approach. We discuss

the most closely-related approaches and provide a quick overview
of additional related work. Note that, with the exception of the tech-
niques discussed in Section 3.1, most of the techniques discussed in
the rest of this section are not alternative approaches to ours, but
rather possible applications of our framework.

3.1 General Approaches to Dynamic Tainting
Due to the increased popularity of dynamic tainting, there have

been a few recent attempts at providing a generalized tainting in-
frastructure [10, 25]. These techniques are meant to be used in the
security field and, thus, have limitations that prevent their use in
more general contexts. Lam and Chiueh [10] propose an approach
that instruments the code to perform taint marking and propagation.
Their approach has two main drawbacks compared to ours. First, it
requires the code to be recompiled, which is especially problematic
when third-party and system libraries are involved (as it is typically
the case with real software). Second, their approach lacks support
for control-flow based tainting. While it is true that most secu-
rity applications of dynamic tainting only require data-flow based
tainting, we believe that a truly general framework should support
both types of propagation. As we show in Section 5, control-flow
propagation can have dramatic effects on the results of dynamic
taint analysis. The framework proposed by Xu and colleagues [25]
shares the same two drawbacks of Lam and Chiueh’s approach and
has the additional limitation of not supporting multiple taint marks.
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3.2 Attack Detection and Prevention
Dynamic tainting has been used extensively to detect attacks tar-

geting software vulnerabilities. The most studied type of software
exploit isoverwrite attacks, a class of attacks where sensitive pro-
gram data is overwritten by an attacker. The data overwritten typi-
cally consists of return addresses, function pointers, or format strings.
By suitably overwriting this data, attackers are able to hijack a pro-
gram and execute arbitrary code. The two most common types of
overwrite attacks are buffer overflows and format string attacks.

Newsome and Song [17] present one of the first dynamic-taint
based approaches for preventing overwrite attacks. Their approach
taints any data read from a network socket. The tainted data is then
propagated as the program executes. Finally, the approach enforces
the security of a program by checking that tainted data is not used as
the target of a jump (including function return addresses), a format
string, or a system-call argument. Several other techniques for de-
tecting overwrite attacks were developed at a similar or later time.
In particular, Suh and colleagues [22] and Kong and colleagues [8]
propose hardware-based approaches. More recent work has focused
on reducing the overhead of earlier approaches. LIFT [21], in par-
ticular, attempts to reduce the overhead of propagating taint infor-
mation by using a direct mapping between memory and taint labels.
It also proposes several optimizations that eliminate unnecessary
taint propagation operations.

Dynamic tainting has also been used to preventSQL injection at-
tacks, in which attackers submit maliciously-crafted strings to a web
application to access its underlying database. Most dynamic-taint
based approaches against SQL injection also operate by tainting and
tracking unsafe data (i.e., input from the user). Then, before a query
string is sent to the database, it is checked to ensure that no tainted
data was used to create the string or specific parts of it. Nguyen-
Tuong and colleagues [18] propose an instance of this approach for
PHP-based web applications, whereas Haldar, Chandra, and Franz
[6], Pietraszek and Berghe [19], and Halfond and Orso [7] target
applications written in Java.

3.3 Information-flow Policies Enforcement
Dynamic tainting has also been successfully used in the context

of information-flow security to enforce information-flow policies.
Such policies define limits on how information is used within a sys-
tem. An example of information-flow security policy in the physical
world is a military system where classified information is forbid-
den to be transferred to individuals without the appropriate clear-
ance level. Dynamic tainting is an ideal technique for enforcing
information-flow policies in a software system; different taint mark-
ings can be used to label sensitive information and then the analysis
can check whether marked data reaches parts of the system that it is
not supposed to reach according to the policies in place.

Also in this case, there are several variations of this general ap-
proach. The RIFLE system [23] provides architecture-based sup-
port for information security by tracking explicit and implicit infor-
mation flows. Chow and colleagues [3] present TAINT BOCHS, a
simulator that can track tainted data through an entire system, in-
cluding hardware, operating system, and applications. Using their
system, they investigate the data lifetime of sensitive information
in several commonly-used applications. Finally, McCamant and
Ernst [14] present a technique that produces an upper bound of the
amount of information leaked by a program at runtime.

3.4 Software Testing and Debugging
Outside of the security field, researchers have started to investi-

gate the use of dynamic taint analysis in the areas of software test-
ing and debugging. TheCOMET system [11] uses dynamic taint-

ing combined with heuristic search to increase statement cover-
age for C programs. Dynamic tainting is used to construct a taint
graph that represents how function inputs relate to variables used in
conditions. With this information, test input generation can focus
on modifying the outcome of specific conditions by narrowing the
search space to include only influential inputs.

Masri and colleagues [13] propose an approach for identifying
and debugging insecure information flows based on dynamic taint-
ing and dynamic slicing. The dynamic tainting portion of the ap-
proach is used to detect illegal information flows under a specific
security policy. Once an illegal flow has been detected, the dy-
namic slicing portion of the approach is used to extract the relevant
portion of the execution (i.e., the set of statements that propagated
information along the illegal flow). This set of statements can then
be used to reduce the amount of code that needs to be examined
when debugging the insecure flow.

3.5 Additional Related Work
Two additional areas of related work are static information-flow

analysis and dynamic slicing.Static information-flow analysis(e.g.,
[16, 20]) is the static counterpart of dynamic taint analysis. As it is
typically the case, static information-flow analysis has the advan-
tage of computing conservative estimates of the information-flow
within a program, whereas dynamic tainting can only identify flows
that actually occur in one of the observed executions. On the flip
side, static information-flow analysis can produce many spurious
results in the presence of constructs such as loops and aliases, due
to imprecision. Which approach is preferable depends on the spe-
cific application considered.

Another related approach isdynamic slicing(e.g., [1, 9]), which
computes a conservative estimate of all statements in a program that
are either affected by or affecting the value of a variable at a spe-
cific program point and for a given execution. Dynamic slicing and
dynamic taint analysis are similar in nature, but compute slightly
different kinds of information. The former identifies the subset of
the statements in a program that affect (or are affected by) one or
more data values. The latter focuses on computing which subset of
the data in the program is affected by a given set of data.

4. OUR APPROACH
In this section, we describe our generic approach for dynamic

taint analysis. More precisely, we provide (1) a general descrip-
tion of our framework, (2) details on the instantiation of the general
approach for x86 binaries, and (3) a description of the tool that im-
plements the framework.

4.1 General Framework
There are three dimensions that characterize dynamic taint anal-

ysis: taint sources, propagation policy, and taint sinks. Because dif-
ferent dynamic taint analyses can be expressed by defining the anal-
ysis along these three dimensions, we defined our general frame-
work in terms of these dimensions.

Taint Sources.Taint sourcesare a description of program data
(memory locations) that should be initialized with taint markings.
Memory locations can be of different types, including variable names,
function-return values, and data read from and I/O stream such as a
file or a network connection. Our framework allows for specifying
memory locations as follows:

Variables and memory offsets.Users can indicate that a memory
area should be tainted by specifying the corresponding variable
name and scope (i.e., global or local to a procedure). For exam-
ple, a user could specify variablev in procedurefoo as a taint
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source. This would cause the area of memory that corresponds
to v to be tainted during execution. Users can also directly spec-
ify a specific area of memory in terms of its offset from the base
address of the program.

Data returned from a specific function. Users can indicate that a
function’s return value must be tainted by simply specifying the
name of the function. For example, imagine an application that
reads data from a database using a function “submitQuery”; a
user would be able to taint all data originating from the database
by specifying “submitQuery” as a source.

Data from a type of I/O stream. To indicate that data read from
a particular type of stream must be tainted, users only need to
specify the stream type. Currently, our framework handles three
types of I/O stream: network, filesystem, and keyboard. For ex-
ample, users could specify that they want any data coming from
the keyboard to be tainted.

Data from a specific I/O stream. Users can also specify that data
from a specific I/O stream must be tainted. In this case, only the
network and the filesystem, for which it makes sense to distin-
guish between different streams, are supported. To indicate the
specific stream of interest, users can specify its type, network
or filesystem, and a unique identifier (absolute path for files, IP
address or IP name and port for network streams).

In addition to specifying the specific program data to be tainted,
a taint source must also indicate how taint markings should be as-
sociated with the identified memory areas. One possibility is to use
a single taint mark. Many existing dynamic taint analyses, includ-
ing most of the techniques discussed in Section 3, can be imple-
mented using a single taint marking. Other applications may need
to discriminate between data read from different sources. An ob-
vious example are techniques for information-flow policy checking
and enforcement, which may need to distinguish, for instance, be-
tween data coming from network hosts with different levels of trust.
To support these applications, our framework allows for specifying
different taint marking for different sources.

Additionally, for taint sources associated with I/O streams, our
framework lets users associate different taint markings to different
data read from a given stream. In this case, users would have to
specify that they want to use “fresh markings” for that stream and
specify the amount of data to be tainted with a single marking. Our
framework would then assign a newly-created taint marking to each
block of data of the given size read from the specified stream and
keep track of the mapping between the block number and the asso-
ciated taint marking. Note that, because of the way we store taint
markings, we can allocate virtually any number of taint markings
(obviously, at the cost of space overhead).

Propagation Policies.A propagation policydescribes how taint
markings should be propagated during execution. Taint propagation
can be expressed in general terms as follows: given a statements,
the taint markings for the data produced bys (produced data) are
some function (mapping function) of the taint markings associated
with the data that affects the outcome ofs (affecting data). The pro-
duced data can be identified unambiguously—it is the set of data,
stored in registers or memory, whose value is modified as a con-
sequence of executings. Conversely, there are different ways in
which to identify affecting data and define the mapping function.
Because our goal is to provide enough flexibility in our framework,
we let users specify both aspects of a propagation policy.

Identifying affecting data. In our framework, users can specify
one of two ways of identifying affecting data: data-flow based
and data- and control-flow based. The former accounts only for

explicit propagation of taint markings, which occurs through di-
rect or transitive value assignments (see example in Figure 1).
The latter also accounts for implicit propagation, which occurs
due to control-flow dependences (see examples in Figure 2). Based
on the application they are targeting, users can specify which
of these two schemes to use. Note that data- and control-flow
based propagation induces a higher runtime overhead than propa-
gation based on data-flow only, as shown in Section 5.1.2. There-
fore, if a technique can be implemented without considering im-
plicit propagation, it can be more efficient. Using our frame-
work, a user could experiment with both possibilities and assess
the trade-offs of the different solutions.

Defining a mapping function. Typically, the set of affecting data
contains several data items with multiple taint markings. In these
cases, the default behavior of our framework is to taint the pro-
duced data with a set containing the union of all such mark-
ings. However, there are many ways in which taint markings can
be propagated depending on the specific application of dynamic
tainting considered. For example, one technique may need to
keep a set of distinct taint markings for each data item, another
technique may merge markings based on some predefined sub-
sume hierarchy among them, and yet another technique may gen-
erate new markings for the produced data based on the specific
set of markings of the affecting data. Currently, we allow users to
define these custom mapping functions by redefining the proce-
dure in the framework that combines the markings. Details about
the specific way in which this is accomplished in the current im-
plementation of our framework are provided in Section 4.3.

Taint Sinks.At a high level, ataint sinkis a location in the code
where users want to perform some check on the taint markings of
one or more memory locations. Taint sinks are characterized by
four aspects: (1) an ID, (2) a memory location, (3) a code location,
and (4) one or more checking operations to be performed at that
code location and using the taint marking(s) associated with that
memory location. The ID is an integer value assigned by the user to
a sink or group of sinks. We explain the purpose of the IDs below,
when discussing checking operations. Our framework provides two
main ways to specify a sink’s memory location and code location.

In the first way, memory and code locations are specified inde-
pendently. In this case, like for taint sources, users can specify vari-
ables and memory locations using a variable’s name and scope, in-
dicating a memory area directly, specifying a procedure name and
the index of the parameter (for formal parameters), or specifying
the name of the function (for return values). The code location can
also be specified in different ways. Under some conditions, users
can specify the code location in terms of its position in the source
code. (Because we want our framework to be able to operate at the
binary level, this option is not always viable; it requires the binary
code to contain debugging symbols.) Alternatively, users can spec-
ify the location in the binary code, in terms of its offset from the
base address of the program. To simplify the use of our framework,
we also give users the possibility of indicating the entry or the exit
points of a procedure, specified by name, as the location of interest.

Thesecond wayaccounts for scenarios where users wants to an-
alyze the taint information beforeeachinstruction of a given type
(e.g., a system call or a jump instruction). In this case, users can
simply specify the instruction of interest, and their checking oper-
ation gets invoked right before any instruction of that type is ex-
ecuted. The taint markings associated with the data read by the
instruction are passed as a parameter to the checking operation, and
the same sink ID gets associated to all instructions.

A checking operation for a taint sink is provided as a user-specified
function. The function must accept as input three parameters: an
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<foo+00>: <function preamble>
<foo+06>: cmpl $0xa,8(%ebp)
<foo+10>: jle 0x15 <foo+21>
<foo+12>: movl $0x1,-16(%ebp)
<foo+19>: jmp 0x1c <foo+28>
<foo+21>: movl $0x2,-16(%ebp)
<foo+28>: movl $0xa,-12(%ebp)
<foo+35>: mov -16(%ebp),%eax
<foo+38>: mov %eax,(%esp)
<foo+41>: call 0x3b <dyld_stub_print>
<foo+46>: mov -12(%ebp),%eax
<foo+49>: mov %eax,(%esp)
<foo+52>: call 0x3b <dyld_stub_print>
<foo+57>: leave
<foo+58>: ret

Figure 3: Assembly code for the code in Figure 2(a).

ID, a memory address, and a special data structure. At runtime, the
memory address will point to the address associated with the sink,
and the data structure will contain the taint information (i.e., the set
of taint markings) associated with that address at the code location
specified. If the checking operation just needs to know the taint
information, then it would not use the second parameter. In some
cases, however, a checking function may need to access the actual
variable or memory location (e.g., to check the taint markings asso-
ciated with different parts of the variable, for variables longer than
one byte). To this end, our framework provides an API that can
be used to retrieve taint information. The ID allows, for instance,
for sharing a checking function among different sinks and having a
slightly different behavior for different sinks.

For a simple example of how taint sources, propagation poli-
cies, and taint sinks work together, consider again the code in Fig-
ure 2(a). Assume that a user of our framework is interested in
checking whether the value of parametera affects in any way the
value ofy printed at the end of functionfoo. In this case, the
user would specify the first parameter offoo as the taint source
and indicate that it should be marked with a given taint marking
ta. The user would then select the default data- and control-flow
based propagation policy. The user would finally specify a taint
sink consisting of variabley at line 11, and whose associated proce-
dure takes as input the taint information fory at line 11 and checks
whether it includes taint markingta (or simply logs that taint infor-
mation for a subsequent check).

4.2 Instantiation for x86 Binaries
Although the abstract definition of dynamic taint analysis is rel-

atively straightforward, defining the details of the approach so that
it is sound and accurate is considerably more complex. In this sec-
tion, we define the instantiation of our generic framework for dy-
namic taint analysis for binaries running on the x86 architecture. In
the discussion, we focus mainly on the details of data- and control-
flow based propagation, which represent the core of dynamic taint
analysis and are the most challenging parts of the approach.

Before discussing the details of the approach, we present a brief
overview and example of the x86 assembly language. Figure 3
shows the assembly code for the code in Figure 2(a). Individual
x86 instructions consist of a mnemonic command name followed
by a variable number of operands. Operands can be registers (e.g.,
%eax, %esp), literal values (e.g.,$0xa, $0x2), or a memory loca-
tion (e.g.,-12(%ebp), <foo+21>). For example, the instruction
at address<foo+21>, which corresponds to line 7 in the source
code of Figure 2(a), copies the literal value 2 into the address at
offset-16 relative to%ebp, which corresponds to variablex.

For each assembly statement, the mnemonic determines thesource
operands(i.e., operands whose value is used by the statement to
perform its computation) anddestination operands(i.e., operands

whose value is modified during the computation). For example, the
assembly instructionmov takes two operands and copies the value
of the first operand (source) into the second operand (destination).
For another example, theadd instruction computes the sum of its
two operands, treating both as sources, and stores the result in the
second operand, which is, thus, also a destination.

4.2.1 Maintaining Taint Markings
Performing dynamic taint analysis involves storing taint infor-

mation for data items within the program being analyzed. In our
approach, taint markings are stored in bit vectors, which each bit
representing a different taint marking. Using bit vectors is a stan-
dard way to limit the cost of combining taint markings in the (pre-
dominant) case where the combination is defined as the union of the
markings. We associate one bit vector to each x86 register and to
each tainted memory location.

In our current implementation, the granularity that we consider
for tainting is a byte. In our initial investigation, we did not find
tainting at finer granularity, such as the bit level, to be cost effec-
tive. Nevertheless, it would be fairly straightforward to modify the
approach so that it operates at a finer granularity, if further experi-
ences show that it is needed.

4.2.2 Data-flow Based Taint Propagation
Our high-level approach to data-flow based propagation consists

of two steps: given an assembly instruction, (1) identify the source
and destination operands based on the instruction mnemonic and
(2) combine the taint markings associated with the source operands
and associate them with the destination operands. (As we explained
above, the way in which taint markings are combined may vary
based on the application, and the default behavior is to union them.)
When this general approach is applied to x86 instructions, there are
several problems (and opportunities) that must be considered for the
dynamic taint analysis to be conservative and accurate. In the rest
of this section, we discuss the most important of these aspects.

Mapping between Sources and Destinations.For some
x86 instructions, different subsets of the source operands affect dif-
ferent subsets of the destination operands. For example, thepush
instruction, which stores the value of a register on the stack, has the
register to be pushed and the stack pointer as source operands, and
the memory location indicated by the stack pointer and the stack
pointer itself as destination operands. Because the stack pointer is
decremented by a constant value, it is not affected by the source
register, whereas the memory location where the register value is
stored is affected by both source operands. In such cases, prop-
agating taint marks from all sources to all destinations would re-
sult in more markings than necessary being propagated and would
introduce unnecessary imprecision in the analysis. Our approach
considers the semantics of the different instructions, suitably iden-
tifies which source operands affect which destination operands, and
propagates taint marks accordingly.

Address Generators.This issue is related to the use of memory
locations as operands. The x86 architecture supports several differ-
ent addressing modes that can be used to access memory. In gen-
eral, addressing modes are either direct, where the memory location
is specified using a constant, or computed using some combination
of register values and constants. For example, in instructionjle
0x15 (position<foo+10> in Figure 3),0x15 directly specifies
the target of the jump instruction as an offset of the current location.
For a different example, in instructionmovl $0xa,-12(%ebp)
(position<foo+28>), the target of the operation is expressed as
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the value of register%ebp minus12. Registers used to compute
memory locations are commonly referred to asaddress generators.

If a memory location is specified using a constant, considering
only the taint markings associated with that memory location is
safe. However, if a memory location is specified using a combi-
nation of registers and constants, considering the tainting of the lo-
cation alone is not enough; to be conservative, the taint markings
associated with the address generators should also be considered.
Most dynamic tainting approaches for preventing buffer overruns
do not consider taint markings associated with address generators
because they can be safely discarded for that specific application.
However, these approaches are not safe in general. Because our
goal is to provide a general, sound framework for taint propagation,
we account for these possible sources of tainting in our approach.

Implicit Operands.In x86 code, not all operands can be iden-
tified by simply looking at the code. More precisely, an x86 state-
ment can haveexplicit operands, which are present in the statement,
andimplicit operands, which are read or modified by the statement
without being explicitly present. The set of implicit operands ac-
cessed by an instruction depends on the semantics of the instruction.
Therefore, modeling such semantics is the only way to correctly
account for implicit operands. For example, consider instruction
push %eax, which has the following semantics: first subtract 4
from register%esp (stack pointer), then store the content of regis-
ter %eax into the memory location stored in%esp. This instruc-
tion involves (1) an explicit read of%eax, (2) an implicit write to
%esp, and (3) an implicit read of the memory location whose ad-
dress is stored in%esp. A taint analysis that does not consider
the two implicit operands (%esp and the memory location) would
not propagate taint markings associated with register%eax to the
memory location on the stack and would be unsafe.

This issue is especially relevant when the%eflags register is an
implicit operand. For example, consider instructionadd %eax,
%ebx. In addition to calculating the sum of its explicit operands
(i.e.,%eax and%ebx), add also implicitly defines several bits in
the%eflags register. In general, the%eflags register is used to
keep some “state” information about the computation. In particular,
after the execution of most arithmetic instructions, the%eflags
register indicates the parity of the result, whether an overflow oc-
curred, the sign of the result, and whether the result was zero. Be-
cause the value of%eflags is used by conditional-jump instruc-
tions, correctly propagating taint markings to the%eflags register
is a prerequisite for correct control-flow propagation of taint mark-
ings, as explained in Section 4.2.3.

Sub-registers.For backward compatibility, the newer 32-bit ar-
chitectures map the lower half of their 32 bit general-purpose regis-
ters to 16 bit registers available in older (16-bit) architectures. For
example, the lower 16 bits of the 32 bit register%eax can be di-
rectly accessed as register%ax. To further complicate the picture,
each of the lower two bytes of some 32 bit registers can also be ac-
cessed directly (e.g., bits 0–7 of register%eax can be accessed as
register%al, and bits 8–15 can be accessed as register%ah). Al-
though these direct addressing modes were implements to support
legacy applications, they are also used in new applications to han-
dle smaller data types and perform string-processing operations. A
dynamic tainting approach that does not account for the presence of
directly addressable sub-registers would be unsafe; it would fail to
recognize (and suitably handle) the fact that, for instance, registers
%ah and%eax are overlapping. When retrieving taint markings for
a 32-bit registers, our approach also considers the taint markings
for all sub-registers. Analogously, when retrieving taint markings

for a 16-bit sub-register, it also considers the taint markings for the
32-bit register that contains the sub-register.

Constant Functions.Constant functions are sequences of in-
structions that always produce the same result regardless of their
input values. An example is the x86 idiom for clearing a register
(e.g.,%eax): xor %eax, %eax. After executing this instruc-
tion, the%eax register always contains the value 0. There are sev-
eral other instances of single-instruction constant functions, such as
sub %eax, %eax andmov %eax, %eax. For these instruc-
tions, the safe data-flow propagation policy of assigning to the des-
tination operands the combination of the taint markings associated
with the source operands is safe, but can introduce considerable im-
precision. To reduce this imprecision, we carefully studied the x86
instruction set and related manuals [5] to identify constant functions
and encode their semantics into our framework.

Compound Branch Instructions.Compound branch instruc-
tions are single instructions that include control flow. An example
is cmov <src> <dest>, which copies the value of its<src>
operand into its<dest> operand only if a specified bit of the
%eflags register is set (or unset, depending on the specific variant
of cmov used). An imprecise propagation would always propagate
taint markings from<src> to <dest>, whereas a more precise
analysis can check the relevant%eflags’s bit and propagate taint
markings only when appropriate.

4.2.3 Control-flow Based Taint Propagation
As discussed in Section 2, taint markings can propagate explic-

itly, due to data flow, or implicitly, due to control flow. We now
present a general approach for control-flow based taint propagation
and discuss how we instantiated the approach for x86 binaries.

Background.First, we concisely introduce a few background
concepts that we need to present the approach. AControl Flow
Graph (CFG)is a directed graph whose nodes represent statements,
whose edges represent possible flow of control between statements,
and that contains two special nodesentry andexit with no prede-
cessors and no successors, respectively. Given two nodesm andn

in a CFG,n postdominates m (n pdom m or pdom(m) = n) iff
all directed paths fromm to exit containn. Given two nodesm
andn in a CFG,n immediately postdominates m (n ipdom m

or ipdom(m) = n) iff n pdomm and there is no nodeo such that
n pdomo ando pdomm. A postdominator (pdom) treefor a CFG
is a rooted tree such that (1) it has the same set of nodes as the
CFG, (2) its root is theexit node, and (3) each node immediately
postdominates its direct descendents in the tree. Finally, given two
nodesm andn in a CFG,n is control dependentonm iff (1) There
is a pathP from m to n with any nodeo in P (excludingm andn)
postdominated byn, and (2)m is not postdominated byn.

General approach.The general approach we use is similar to
other approaches presented in the literature (e.g., [13, 23]) and is
based on the concept of control dependence. As we discussed in
Section 2, indirect propagation occurs due to control dependences
between statements. When a conditional branching statementbr

decides whether a statementst may be executed, the values that
affectbr’s outcome may affect the value of the data modified byst.
Therefore, to be conservative, the taint markings associated with
br’s source operands must be combined and associated withst’s
destination operands. To achieve this result, our approach keeps
track at runtime of relevant taint markings by leveraging statically-
computed postdominance information, as follows.
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Figure 4: CFG and pdom tree for the code in Figure 2(a).

• When the execution reaches a conditional branching statement
br, our approach (1) computes a settaint that contains the com-
bination of the taint markings forbr’s source operands and (2)
add to a setS a pair< br, taint >.

• When the execution reachesipdom(br), wherebr is a condi-
tional branching statements, it removes fromS all pairs< x, y >

such thatx is equal tobr.
• When a statementst is executed andS is not empty, it adds, for

each pair< x, y > in S, the taint markings iny to the set of
taint markings to be combined and associated tost’s destination
operands.

Because (by definition) all of the statements control dependent
on a conditional branching statementbr are on paths that start atbr

and end withbr’s immediate postdominator, the approach described
above is guaranteed to conservatively propagate taint markings ac-
cording to the control dependences in the program. To provide an
illustrative example, we use again the code in Figures 2(a) and 3,
whose CFG and postdominator tree are shown in Figure 4. We
assume that procedurefoo is called asfoo(100) and that pa-
rametera at line 1 is tainted with taint markingta. For ease of
presentation, we discuss the example at the source-code level.

At foo’s entry, setS is empty. When line 3 is executed, our ap-
proach would recognize this as a conditional branching statement
and add a pair< 7, {ta} > to S becauseta is the (only) taint mark-
ing associated with the branch’s source operands. The next line ex-
ecuted is line 4. BecauseS is not empty, the taint markings inS are
combined and associated with the statement’s destination operands.
In this case, there is only one set inS, and the resulting set of mark-
ings is{ta}, which gets associated with variablex. Next, line 9
is executed, which corresponds toipdom(7). Pair< 7, {ta} > is
therefore removed fromS, which becomes empty. Atfoo’s exit,
x’s set of taint markings is{ta}, which is the correct result.

To account for situations like the one shown in Figure 2(b), where
the above approach would miss the fact thatx’s value depends on
a’s value, we leverage a solution proposed in previous work (e.g.,
[13, 15]) of identifying each conditional instruction such that dif-
ferent memory locations are defined along the two branches of the
instruction. For each such instruction, our approach adds, at instru-
mentation time, spurious definitions that make the set of memory
locations defined along the two branches equal. For the code in
Figure 2(b), this would be analogous to add a statementx = x on
the (now empty) else branch of the statement at line 4.

The presented approach is safe under the assumption that we can
analyze the binary code on which we are performing dynamic taint-
ing and conservatively (1) build CFGs for the procedures in the code
and (2) identify which memory locations are accessed by each in-
struction. Unfortunately, this assumption is often unmet due to the
inherent difficulties in analyzing binary code, especially in the pres-
ence of indirect branches and indirect memory accesses. Suitably

Dytan
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(and libraries)
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provided
library

Configuration

Executable
(and libraries)

Dytan
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CFG
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Figure 5: Overview of the DYTAN tool.

handling these issues requires dynamic updating, complex and of-
ten overly conservative analysis techniques [2], or additional knowl-
edge about the compiler used to create the binary [4]. To simplify
our initial implementation of the approach, we are currently limit-
ing our tool to statically identifiable memory locations, similarly to
Masri and colleagues [13].

Specificities of x86 code.The x86 architecture supports con-
ditional programming constructs, such asif statements andfor
andwhile loops, by means of a test-and-branch idiom: first, the
program executes a test instruction, such ascmp, which sets some
bits in the%eflags register; then, a conditional branch instruc-
tion is executed, whose outcome depends on the bit values in the
%eflags register. Because all conditional branch instructions rely
on the%eflags register, a propagation policy that does not ac-
count for implicit operands cannot implement control-flow based
propagation. As discussed in Section 4.2.2, our approach consid-
ers implicit operands and suitably associates taint markings to the
%eflags register, which enables safe data-flow and control-flow
based dynamic tainting.

Another important aspect of the x86 instruction set is the differ-
ence between direct and indirect branches. Direct branches specify
their target address as a constant memory address, while indirect
branches use a register. For example, instructionjmp 0x8048345
is a direct branch to address0x8048345, whereasjmp (%eax)
is an indirect branch to the address stored in register%eax. For di-
rect conditional branches, which do not have source operands, it is
enough to consider the taint markings associated with the%eflags
register. Indirect conditional branches, however, have source operands.
The taint markings for such operands must be included in the set of
taint markings that are propagated through control-flow (i.e., they
must be added to the set of taint markings added to setS when
the corresponding indirect conditional branch is executed). Our ap-
proach suitably handles both cases.

4.3 The Tool: DYTAN
We implemented our framework in a prototype tool calledDY-

TAN (DYnamic Taint ANalyzer). Figure 5 provides an overview of
DYTAN ’s mode of operation. To provide a friendly interface for the
tool, we give users the ability to specify dynamic taint techniques
through aconfigurationfile in XML format. The user-provided
configuration file specifies the kind of dynamic taint analysis to be
performed in terms of taint sources, propagation policies, and taint
sinks. Based on this configuration,DYTAN instruments the x86ex-
ecutableon the fly to produce aninstrumented executable. To per-
form instrumentation on the fly,DYTAN leverages thePIN dynamic
instrumentation framework [12], which is well supported and of-
fers a rich APIs for manipulating x86 binaries. Performing control-
flow based taint propagation requiresDYTAN to computeCFGs and
pdom information at code loading time. To reduce the overhead,
this information is computed only once per binary object and then
stored along with a checksum of the object. When a binary object
is loaded,DYTAN checks whether there are CFGs and postdomi-

202



nance information stored for that object and with the right checksum
(the object could have been updated after the information had been
stored). If so, it loads the information. Otherwise, it computes and
stores it. While running, the instrumented program needs to access
the DYTAN library, which provides taint-propagation functionality,
and theuser-provided library, which contains the checking opera-
tions associated with taint sinks and, possibly, custom operations
for combining taint markings, as discussed in Section 4.1. We pro-
vide an example ofDYTAN ’s usage in Section 5.1, where we use the
tool to implement two different techniques based on dynamic-taint
analysis.

Although we attempt to expose most of the framework’s options
through the XML configuration file, we also support power users
that may need more flexibility than what the configuration file can
offer. DYTAN provides direct access to its functionality through a
C++ API. Using this API, users can register call back functions that
implement their custom approach for marking, propagating, and
checking taint markings. To use the API, users would write a C++
function with a predefined name that invokes the API methods to set
configuration parameters and register functions in the user-provided
library. Functions that implement a specific functionality must pro-
vide a predefined signature, which letsDYTAN substitute them to its
internal default implementation of the corresponding functions.

We stress thatDYTAN , by working at the binary level, can trans-
parently handle external and system libraries. The tool simply in-
struments application and library code on the fly, at code loading
time, and propagates taint markings appropriately.

5. EMPIRICAL EVALUATION
Our empirical evaluation has two main goals: (1) assess the suit-

ability of our framework for implementing different types of dy-
namic taint analyses and (2) study how the specific characteristics
of the dynamic tainting approach used can affect efficiency and ac-
curacy of the taint analysis. We state these goals in terms of the two
following research questions:

RQ1: Can we implement existing dynamic taint analyses with
limited effort using our framework?

RQ2: To what extent the way information flow is handled affects
the results and performance of taint analysis?

We first investigate these two research questions, and then present
a small case study in which we measured the performance of our
tool in terms of time and space overhead.

5.1 Research Question 1
To answer RQ1, we need to demonstrate thatDYTAN can be used

to implement different dynamic tainting techniques with a limited
amount of effort. To this end, we selected two techniques previously
presented in the literature and implemented them usingDYTAN . To
check that our implementations are faithful replicas of the original
techniques, we partially replicated or emulated the empirical stud-
ies used to evaluate such techniques (which also serves as a sanity
check forDYTAN ).

5.1.1 Implemented Techniques

Prevention of overwrite attacks.The first technique that we
re-implemented is the technique for preventing overwrite attacks
presented in [17] and [21] and summarized in Section 3.2. We chose
this technique because it is well known, clearly defined, has been
implemented several times, and has been evaluated against a set
of freely-available attack benchmarks, which allows us to replicate
the original studies and, thus, assess how well our implementation
reflects the original technique. Within our framework, the technique
can be specified as follows:

<dytan−c o n f i g>
<s o u r c e s>

<s o u r c e t ype =’’network’’>
<h o s t>∗</ h o s t>
<p o r t>∗</ p o r t>

</ s o u r c e>
</ s o u r c e s>
<p r o p a g a t i o n>

<d a t a f l o w>t r u e</ d a t a f l o w>
<c o n t r o l f l o w> f a l s e</ c o n t r o l f l o w>

</ p r o p a g a t i o n>
<s i n k s>

<s i n k>
<i d>36</ i d>

< l o c a t i o n t ype =’’ i n s t r u c t i o n’’>
< i n s t r u c t i o n =’’ r e t’’ />
. . .

< i n s t r u c t i o n =’’jmp’’ />
</ l o c a t i o n>
<a c t i o n =’’ v a l i d a t e−absence’’ />

</ s i n k>
</ s i n k s>
</ dytan−c o n f i g>

Figure 6: SampleDYTAN configuration file.

Sources.The taint sources for this technique consist of any data
that is read from the network. These data should all be tainted
using a single taint marking.

Propagation policy. A propagation policy based on data-flow alone
is sufficient in this case.

Sinks. There must be a sink for each instance of a call, return, or
branch instruction. At each of these points, the target of the con-
trol transfer instruction should be checked to make sure that it
was not tainted by data read from the network.

To provide an example ofDYTAN ’s usage, Figure 6 shows how
the informal description above would be encoded inDYTAN ’s con-
figuration file. In this example, the network is the only taint source.
Thehost andport tags allows users to indicate either a class of
connections or an individual connection, with “*” being a wildcard
that matches any host or port. Because no specific taint marking is
specified,DYTAN would follow its default behavior and use a sin-
gle taint marking. Therefore, according to the configuration, any
data coming from any network connection would be tainted with a
generic taint marking. The propagation section specifies that only
data-flow based propagation should be used. Finally, the sink sec-
tion specifies that the checking operation, functionvalidate-ab-
sence, should be performed right before any of the listed instruc-
tions (the list should contain all control-transfer instructions).

To complete the implementation of the approach, we added to the
user-provided library an implementation ofvalidate-absence
that checks whether the set of taint markings passed as a parameter
is empty and terminates otherwise; when the check fails, it means
that data from the network is determining the target of a control-
transfer operation, which is a symptom of an overwrite attack.

Detection of SQL injection.The second technique that we re-
implemented is a technique against SQL-injection proposed by Hal-
fond and Orso [7]. It is based on (1) identifying trusted data in a web
application (in most cases corresponding to hard-coded strings), (2)
tainting such data, and (3) checking that all sensitive parts of the
SQL queries generated by the application (i.e., everything except
string and numeric literals) contain only tainted data. Because a
taint marking indicates trusted, rather than untrusted, data, this tech-
nique is called positive tainting. We chose this technique because
it is different in nature from the first one we selected and because
it involves a more complicated dynamic taint analysis. For the sake
of space, we do not show the XML configuration for this technique
and just summarize its definition within our framework.
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Sources.The taint sources consist of all hard-coded strings in the
application, which should be tainted with a marking indicating
complete trust. In addition, developers can specify additional
markings to indicate, for instance, trusted data read from a file
that should be treated in a specific way. For the study, we only
considered hard-coded strings and specified them as memory lo-
cations in the binary code.

Propagation policy. Also this technique is only concerned with
taint markings propagated through data flow. More precisely, the
original definition of the technique focuses on a specific subset
of data-flow propagation and only propagates taint markings as-
sociated to strings and that occur through string operations. We
simply used the standard data-flow based propagation provided
by DYTAN , which can conservatively propagate the taint mark-
ings associated with the hard-coded strings.

Sinks. We need a sink for each database access point (i.e., points
in the code where a query is submitted to a database through a
call to a specific function). The code location of the sink is the
access point itself, and the variable of interest is the parameter
that contains the query about to be submitted to the database.
The checking operation consists of parsing the query and making
sure that every character composing a SQL keyword or operator
has a trust marking. If developers specified custom sources of
trusted data, the checking function could be extended to handle
data that contains these additional trust markings.

It is worth noting that the checking function for this technique
is more complex than the one for checking code overwrites. It
first uses an SQL parser on the string about to be submitted to the
database (passed as a parameter byDYTAN ) to identify tokens corre-
sponding to SQL operators, keywords, and literals. Then, it checks
the taint markings associated with the characters in the non-literal
tokens. We were able to integrate the checking function from the
original WASP tool into our implementation of the technique by (1)
writing a wrapper around the original function that accepted the
right parameters and (2) specifying the wrapper as the checking op-
eration for the sinks inDYTAN ’s configuration file.

5.1.2 Evaluating the Two Techniques
To provide some confidence that the reimplementation of the

two selected techniques generated by instantiating our framework
is faithful, we partially replicated the studies performed to vali-
date the original techniques. For the technique against overwrite
attacks, we used the same benchmark suite developed by Wilan-
der [24] and used in [21]. The benchmark consists of 18 different
overwrite attacks that use a variety of exploits, including heap and
stack overflows. Both our implementation and LIFT were able to
prevent all 18 attacks. While not surprising, these results show that
DYTAN allowed us to accurately implement, with low effort (see
Section 5.1.3), the original technique.

For the technique against SQL injection, we could not reproduce
the studies performed by the authors because the original imple-
mentation of the technique works onJSP servlets, whereas our im-
plementation works on binaries. Therefore, we emulated the study
by extracting several query-building sequences from the servlets
used as subjects in [7] and converting them to equivalent C code
that takes as input the same URLs used in the original study.

Table 1 shows the results of our implementation compared with
the original results, in terms of number of attacks stopped and num-
ber of false positives generated. Also in this case, our implemen-
tation of the technique based onDYTAN achieved the same level of
success at stopping SQL injection attacks as the original approach.

Table 1: DYTAN SQL injection false positive results
Subject # Attacks Successful Attacks

DYTAN WASP

events 6209 0 0
checkers 4431 0 0

Subject # Legitimate Accesses False Positives
DYTAN WASP

events 900 0 0
checkers 1359 0 0

5.1.3 Discussion of the Results
Overall, the effort required to implement the two techniques us-

ing DYTAN was fairly limited. Implementing the overwrite attack
prevention technique took less than an hour. The only actual code
we had to write was the checking operation associated with the taint
sinks, which is a simple one. Implementing the approach against
SQL injection was more complex. The most difficult parts were
adapting and integrating the (existing) checking operation into the
framework and finding a way to specify taint sources. The overall
implementation time was still less than a day of work.

We are well aware that these results are preliminary in nature and
highly qualitative, and that there are many threats to their validity
because the users of the framework were also the ones who devel-
oped it. More extensive studies with external users are needed to
address these threats and provide more confidence in the results.
Nevertheless, we believe that the results for this first set of stud-
ies are promising, especially considering that our implementations
were able to perform successfully on reproductions and emulations
of the studies used to evaluate the original techniques.

5.2 Research Question 2
The goal of this part of the evaluation is to investigate the effects

that imprecision can have on the results of taint analysis. Because
more conservative taint-propagation approaches are typically also
more expensive, it is important to assess whether the additional cost
involves comparable benefits in terms of accuracy of the results. For
some applications, unsafe results may be acceptable if they come at
a much lower cost in terms of overhead imposed by the analysis.
To investigate this issue, we performed dynamic taint analysis on
two subjects using approaches with different degrees of conserva-
tiveness and compared the results obtained with the different ap-
proaches. More precisely, we considered the following approaches:

CF & DF is the approach corresponding to the control- and data-
flow based propagation policy supported in our framework.

DF Full corresponds to the data-flow based propagation policy sup-
ported in our framework. It is conservative with respect to taint
propagation that occurs through data flow, but disregards the ef-
fects of control dependences.

DF no IM refers to a data-flow only propagation that does not con-
sider the effects of implicit operands (see Section 4.2.2).

DF no AG refers to a data-flow only propagation that does not con-
sider the effects of address generators (see Section 4.2.2).

DF Direct is the least conservative of the five approaches. It ac-
counts only for taint propagation that occurs due to data flow
involving only explicit operands (i.e., it disregards the effects of
indirect operands and address generators).

Throughout the paper, we provided various examples that showed
how disregarding the effects of some code constructs could lead to
loss of information and, thus, to unsafe results. To estimate the en-
tity of such loss in practice, we used two real, widely-used software
subjects: FIREFOX (http://www.mozilla.com/firefox/), a web
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Figure 7: Tainting results for different propagations.

browser which consist of 850KB of binary code without consider-
ing shared libraries; andGZIP (http://www.gzip.org/), a com-
pression tool which consist of 75KB of binary code without consid-
ering shared libraries. We usedDYTAN to implement a straightfor-
ward dynamic taint analysis tool and ran it on the two subjects. The
tool taints the programs’ inputs (data from the network for FIRE-
FOX and files to be compressed forGZIP) and dumps the taint in-
formation for the whole memory at the end of the execution. We
generated five instances of the tool, each implementing one of the
propagation approaches described above.

For FIREFOX, we considered two types of executions: one in
which we loaded one page and one in which we loaded three differ-
ent pages. In both cases, we exited FIREFOX right after the pages
were loaded. ForGZIP, we simply considered an execution in which
we compressed a large file.

To collect the data, we ran each of the five versions of the taint-
ing tool on FIREFOX andGZIP while executing them as described,
and measured the number of memory bytes tainted at the end of the
executions. We repeated the measurement ten times and averaged
the results. Figure 7 shows the collected measures for the three
kinds of executions: FIREFOX run on one page, FIREFOX run on
three pages, andGZIP compressing a file. For each execution type,
the figure shows the relative number of bytes tainted when each of
the five taint-propagation approaches is used. 100% corresponds to
the number of bytes for the most conservative approach (i.e., CF
& DF). To better assess the relative differences shown in the fig-
ure, consider that the total amount of memory tainted for FIREFOX

one page, FIREFOX three pages, andGZIP is 1.2MB, 2.6MB, and
2.2KB, respectively.

As the figure shows, there is a dramatic difference in the amount
of memory tainted when using different taint-propagation approaches.
It is apparent that not considering control-flow based propagation
results in a considerable loss of information, ranging from 20% to
almost 45%. The effect of implicit operands is relevant for FIRE-
FOX but almost irrelevant forGZIP, whereas not considering address
generators has a dramatic effect in all three cases, ranging from
about 40% to more than 60% information loss.

One possible explanation for the difference in the effects of im-
plicit operands and address generators is that address generators are
usually used to calculate the location of a memory access. There-
fore, disregarding address generators would result in many mem-
ory locations not being tainted with the generators’ taint markings.
Conversely, the most common implicit operand is the%eflags
register, which is read almost exclusively by conditional branch op-
erations. Therefore, when control flow is not considered, the effect

of implicit operands is very limited. Our initial examination of the
binary code of the two subjects and of the propagation logs option-
ally produced byDYTAN confirms this explanation.

Overall, the results provide a clear indication that disregarding
some causes of taint propagation can have significant repercussions
on the results of dynamic taint analysis and, therefore, on any ap-
plication that relies on these results. Whereas for some applications
the effect could be irrelevant, in other cases it may make the ap-
proach unsafe. Our framework, besides allowing for quickly im-
plementing different dynamic tainting analyses, also lets users ex-
periment with different variations of a specific technique and assess
their relative effectiveness. When satisfied with the results for one
variation, users could then keep using that instance of the technique
or implement an ad-hoc, optimized version of the analysis with the
same characteristics.

5.3 Performance of the Tool
To assess the time and space overhead imposed byDYTAN , we

performed a case study using againGZIP. We did not perform
the study on FIREFOX because its functionality is not CPU-bound,
which causes the overhead to be masked by free cycles in the exe-
cution. To compute time overhead, we measured the time required
to compress a file withGZIP for a normal execution and while per-
forming dynamic taint analysis. We performed the same taint anal-
ysis used for our second research question, but considered only the
two standard propagation policies provided byDYTAN : data-flow
based and control- and data-flow based. Also in this case, we reran
the measurements ten times and averaged the results. The time
overhead we measured for data-flow based propagation alone was
approximately 30x, whereas the overhead imposed by control- and
data-flow based propagation was approximately 50x.

To calculate the space overhead imposed byDYTAN , we mea-
sured the memory allocated byGZIP during a normal execution and
while performing dynamic taint analysis. BecauseGZIP is a batch
program, we used an external program that took a snapshot of the
memory when the compressed file being created reached a given
size. As before, we averaged over ten measurements of the results.
The resulting space overhead is approximately 240x.

These overheads are undoubtedly high, but they are comparable
to the overheads reported in previous work on dynamic taint analy-
sis (e.g., [3, 23]). One factor to keep into account is that those pre-
vious techniques were ad-hoc techniques, whereas in implement-
ing our framework, we often had to trade time and space efficiency
for flexibility. Moreover, our current implementation ofDYTAN is
unoptimized, and there is room for improvement. Currently, we
have one set of taint markings for each byte; if contiguous mem-
ory locations have the same taint markings, as it is often the case,
we can associate a single bit vector to the whole memory range.
We also anticipate being able to reduce memory consumption by
switching to a more efficient storage mechanism for taint markings,
such as splay trees. The current version ofDYTAN keeps all of the
CFGs and postdominance trees for a program and related libraries in
memory at once; we could easily optimize the tool by only loading
graphs that are relevant for the part of code being executed. Anal-
ogously, there are several possible improvements that could speed
up the taint propagation and reduce time overhead, such as using
static-analysis information to avoid propagating taint markings that
could never reach a taint sink or precomputing propagation within
maximal basic blocks.

In short, although we do not expect this kind of framework to
become as efficient as an optimized implementation that targets a
specific task, we are confident that the overhead can be reduced by
optimizing our implementation. Moreover, we are currently more
interested in providing a general approach than an efficient one, and
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the overhead imposed was not a limiting factor in the preliminary
studies that we performed.

6. CONCLUSION AND FUTURE WORK
We presented our generic framework for dynamic taint analy-

sis, which provides several advantages over ad-hoc techniques and
tools for dynamic tainting. First, it is highly flexible and customiz-
able; specific taint analysis can be instantiated by simply specifying
which data should be tainted and with which taint markings, how
taint markings should be propagated during execution, and where
taint markings should be checked and how. Second, it conserva-
tively handles propagation of taint markings due to control- and
data-flow. Finally, it works at the application level and can work
transparently on programs that use external and system libraries.

We also presentedDYTAN , a prototype tool that we developed
and that implements our framework for x86 binaries.DYTAN lever-
ages additional information possibly provided with the code, such
as debugging symbols, but can perform dynamic taint analysis also
on stripped binaries alone, which makes the tool widely applicable.

We usedDYTAN to perform a set of preliminary studies. The first
set of studies shows howDYTAN allows for implementing differ-
ent dynamic tainting approaches with limited effort. The remaining
studies illustrate how the different aspects of the taint analysis can
affect its results. The studies also show the practical applicability
of DYTAN , by running it on theFirefox web browser.

We have three main directions for future work. First, we will
investigate ways to improveDYTAN ’s efficiency. We have several
ideas of how the analysis can be made more efficient, some of which
are discussed in Section 5.3. Second, we will gather feedback from
users of the framework to assess whether our current framework
needs to be extended to accommodate additional analysis (e.g., by
performing tainting at the bit, rather than the byte level). Third, we
want to useDYTAN to investigate specific applications of dynamic
tainting in the context of software testing and debugging. In partic-
ular, we already started working on a debugging technique based on
dynamic tainting.
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