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ABSTRACT Unfortunately, most existing techniques and tools for dynamic

Dynamic taint analysis is gaining momentum. Techniques based@int analysis are defined in an ad-hoc manner, to target a specific
on dynamic tainting have been successfully used in the context ofroblem or a small class of problems. It would be difficult to ex-
application security, and now their use is also being explored in dif- tend or adapt such tec_hnlques and t°.°|f5 so that they can be used in
ferent areas, such as program understanding, software testihg, arPther contexts. In part_lcglar, most existing approa_ches a_re_focused
debugging. Unfortunately, most existing approaches for dynamicOn data-flow based tainting only, and do not consider tainting due
tainting are defined in an ad-hoc manner, which makes it difficult to the control flow within an application, which limits their general
to extend them, experiment with them, and adapt them to new con-appl'c.ab'“ty' Also, most existing techniques support either asin-
texts. Moreover, most existing approaches are focused on data-flo /'€ taint ”?af_k'“g ora _smaII, fixed number (.)f mar_klngs, which is
based tainting only and do not consider tainting due to control flow, prc_;bl_ematlc in applications such as debuggmg. F_mally, a!most_ no
which limits their applicability outside the security domain. To €XiSting technique handles the propagation of taint markings in a
address these limitations and foster experimentation with dynamicm“y_ cor_lservatlve_ way, Wh'ch may be ap_pr_oprlate for the specific
tainting techniques, we defined and developed a general frameworl%‘ppl'c.at'Ons considered, bUt. IS problematl(; n general. Because de-
for dynamic tainting that (1) is highly flexible and customizable, (2) Ve'OP'”g Support fo_r dynamic talnt_ analysis is n_ot_ _onIy time con-
allows for performing both data-flow and control-flow based taint- SYMN9. b.ut‘also fairly complexl, this Igck of fI(.eX|b|I|.ty‘a.1nd gener-
ing conservatively, and (3) does not rely on any customized run_allty of eX|st|ng tools and techniques is especially limiting for this
time system. We also presen¥TAN, an implementation of our type of dynamic anaIyS|_s. . . . .
framework that works on x86 executables, and a set of preliminary 1° ddress these limitations and foster experimentation with dy-
studies that show howyTAN can be used to implement different namic t_alntl_ng technlques, n th's. paper we present a framework for
tainting-based approaches with limited effort. In the studies, Wedynamlq taint analys!s. we deS|glned the f“’?‘mew.ork o be. general
also show thabyTAN can be used on real software, by usingi and fI_eX|bIe, so that it aIIows_, for_lmplementlng dn_‘ferent kinds of
FOX as one of our subjects, and illustrate how the specific char-techniques based on dynamic taint analysis with little effort, User_s
acteristics of the tainting approach used can affect efficiency and*@" leverage the framework to quickly develop prototypes for their
accuracy of the taint analysis, which further justifies the use of our €€hnigues, experiment with them, and investigate trade-offs of dif-

framework to experiment with different variants of an approach. ferent altlernatl.ves. For a simple example, the framewqu CO.U|d be
used to investigate the cost effectiveness of considering different

Categories and Subject Descriptors:D.2.5 [Software Engineer-  types of taint propagation for an application.
ing]: Testing and Debugging; Our framework has several advantages over existing approaches.
General Terms: Experimentation, Security First, it is highly flexible and customizable. It allows for easily
specifying which program data should be tainted and how, how taint
markings should be propagated at run-time, and where and how
taint markings should be checkeBecondit allows for performing
1. INTRODUCTION data-flow and both data-flow and control-flow based taintirtjrd,
Dynamic taint analysis (also known as dynamic information flow from a more practical standpoint, it works on binaries, does not
analysis) consists, intuitively, in marking and tracking certain data N€€d access to source code, and does not rely on any customized
in a program at run-time. This type of dynamic analysis is be- hardware or operating system, which makes it broadly applicable.
coming increasingly popular. In the context of application secu- We also presenbyTAN, an implementation of our framework
rity, dynamic-tainting approaches have been successfully used tghat works on x86 binaries, and a set of preliminary studies per-
prevent a wide range of attacks, including buffer overruns (e8g., [ formed usingdYTAN. In the first set of studies, we report on our
17]), format string attacks (e.g., [17, 21]), SQL and command in- experience in usin@YTAN to implement two tainting-based ap-
jections (e.g., [7, 19]), and cross-site scripting (e.g., [18]). &lor proaches presented in the literature. Although preliminary, our ex-
recently, researchers have started to investigate the use of tainting2€rience shows that we were able to implement these approaches
based approaches in domains other than security, such as prograf®mpletely and with little effort. The second set of studies illus-

understanding, software testing, and debugging (e.g., [11, 13]).  trates how the specific characteristics of a tainting approach can
affect efficiency and accuracy of the taint analysis. In particular, we
investigate how ignoring control-flow related propagation and over-
Permission to make digital or hard copies of all or part of thirknfor looking some data-flow aspects can lead to unsafety. These results
persongl or ﬂgSSLoomd lise is Qfl,’a”ted without re% prOV'd‘*Ud‘bg'%S are  fyrther justify the usefulness of experimenting with different varia-
not made or distributed for profit or commercial advantage agtiddpies i, of gynamic taint analysis and assessing their tradeoffs, which
bear this notice and the full citation on the first page. Toyootherwise, to be d ith limited eff . f K Th d
republish, to post on servers or to redistribute to listgyunees prior specific can be Or_‘e with limited effort usmg our ra_meV\_/(_)r - The secon
permission and/or a fee. set of studies also shows the practical applicabiliypgfan, by

ISSTA'07 July 9-12, 2007, London, England, United Kingdom. successfully running it on thelREFOX web browser.
Copyright 2007 ACM 978-1-59593-734-6/07/000%5.00.
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The contributions of this paper are: value of parametea at line 1 with taint marking,. Althougha'’s

value is not involved in the computation &f it nevertheless af-

o The definition of a generic framework for dynamic taint analysis fectsx’s value through a control dependence: the outcome of the
that (1) suitably handles information flow due to data and control predicate at line 3 decides whether line 4 or line 7 will be exe-
flow within a program and (2) allows for customizing the analysis cuted. Therefore, the value »fat the end of the execution should
along several dimensions. be tainted with marking,. Conversely, variablgg would not be

e Atool, DYTAN, that implements our framework for x86 executa- tainted because its value does not depend'®ralue in any way.

bles, works at the application level, and does not require any spe- 1 yoid foo(int a) { 1 void foo(int a) {
cial support from the runtime system. 2 int x, vy; 2 int x, vy;
e A set of studies that provide initial evidence of the generality of 3 if (a> 10) { 3 X = 2;
our framework, its applicability, and the potential usefulness of 4 x =1 4 if (a>10) {
experimenting with different variations of dynamic taint analysis. g else { g x =L
The rest of the paper is organized as follows. We provide back- ; X =2 g )[l)r_mtl?x)
ground information and motivation for the work in Section 2. Sec- g y = 10; 9 print (y);
tion 3 discusses related work. Section 4 presents our approach ando print(x); 10
the tool that implements our approach. We discuss our empiricalll print(y);
evaluation of the approach in Section 5. Finally, we conclude and12 }
discuss future-work directions in Section 6. (a) (b)
Figure 2: Example code that contains implicit information flow.
2. BACKGROUND AND MOTIVATION Note that there are even subtler cases of implicit information

In this section, we present background information on dynamic flow. For example, consider the code in Figure 2(b), which is se-
tainting and a set of examples that we use throughout the papeinantically equivalent to the code in Figure 2(a) but does not contain
Intuitively, dynamic tainting tracks the information flow within a anel se branch for the f statement at line 4. Assume that we in-
program by (1) associating one or more markings with some datavoke proceduré oo asf 0o( 2) . In this case, the predicate (now at
values in the program and (2) propagating these markings as dathne 4) would still affect the value of. However, this information
values flow through the program during execution. Consider, for flow would be difficult to identify by simply observing the execu-
instance, the simple example in Figure 1. Imagine that we taintedtion because is defined before the predicate is computed and is
the variablesa at line 2 andb at line 3 with taint markings. and not redefined afterward.
ty, respectively. In such a case, we would expect, at the end of the As we discuss in detail in Section 4, our approach takes into ac-
execution, that the taint markings associated with variakleg, count both explicit and implicit information flow in a conservative
andz would consist of set§t, }, {t}, and{t., ¢}, respectively. ~ way, so allowing the user to perform an accurate and safe dynamic
Taint markingt,, initially associated witha, would be associated taint analysis. Before describing our approach, we present some
with wbecause’s value is used to compute Analogously, mark-  applications of dynamic taint analysis that could benefit from our
ing t, would be associated with because the value of whichis ~ framework and discuss related work.
now tainted witht,,, is used to computg. The propagation of taint

markings for the remaining variables is analogous. 3. RELATED WORK
1 int a, b, w, x, vy, z; There is a good deal of related work for our approach. We discuss
2 a=11; the most closely-related approaches and provide a quick overview
2 v?/ - a5;* 5. of additional related work. Note that, with the exception of the tech-
5 x-b + 1- nigues discussed in Section 3.1, most of the techniques discussed in
6 y=w+ 1 the rest of this section are not alternative approaches to ours, but
7 z=x+y; rather possible applications of our framework.

Figure 1: Example code that contains explicit information flow. 3.1 General Approaches to Dynamic Tainting

In this example, taint propagation occurs becausexgficit in- Due to the increased popularity of dynamic tainting, there have
formation flow that is, direct involvement of a tainted variable in  been a few recent attempts at providing a generalized tainting in-
the computation of another variable’s value. Explicit information frastructure [10, 25]. These techniques are meant to be used in the
flow can also be described as propagation that occurs due to datsecurity field and, thus, have limitations that prevent their use in
flow or data dependencem the code (e.g., there is a data-flow more general contexts. Lam and Chiueh [10] propose an approach
chain betweey anda). that instruments the code to perform taint marking and propagation.

A less intuitive cause of propagationiisplicit information flow Their approach has two main drawbacks compared to ours. First, it
which refers to situations in which a tainted data value affects therequires the code to be recompiled, which is especially problematic
value of another variable indirectly. Whereas explicit information when third-party and system libraries are involved (as it is typically
flow is related to data dependencies, implicit information flow is the case with real software). Second, their approach lacks support
typically due to control dependenéds the code. For an exam- for control-flow based tainting. While it is true that most secu-
ple, consider the code in Figure 2(a) and assume that we tainted thety applications of dynamic tainting only require data-flow based

LA statement is data dependent on a statementf (1) s» uses a tainting, we believe that a truly general framework should support

2 2 ; ; ; R
variablev that is defined irs; and (2) there is a def-clear path with both type_s of propagation. As_we show in Section 5, control ﬂOW_
respect ta betweens; andss. propagation can have dramatic effects on the results of dynamic
2|nformally, a statement, is control dependent on a statement taint analysis. The framework proposed by Xu a_nd c‘olleagues [25]
if (1) s1 contains a predicate, and (2) depending on the outcome ofshares the same two drawbacks of Lam and Chiueh’s approach and
s1, S2 may not to be executed. has the additional limitation of not supporting multiple taint marks.
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3.2 Attack Detection and Prevention ing combined with heuristic search to increase statement cover-

Dynamic tainting has been used extensively to detect attacks tar2ge for C programs. Dynamic tainting is used to construct a taint
geting software vulnerabilities. The most studied type of software 9raph that represents how function inputs relate to variables used in
exploit is overwrite attacksa class of attacks where sensitive pro- conditions. With this information, test input generation can focus
gram data is overwritten by an attacker. The data overwritten typi-On modifying the outcome of specific conditions by narrowing the
cally consists of return addresses, function pointers, or format stringS€arch space to include only influential inputs. o
By suitably overwriting this data, attackers are able to hijack a pro- Masri and colleagues [13] propose an approach for identifying
gram and execute arbitrary code. The two most common types oftnd debugging insecure information flows based on dynamic taint-
overwrite attacks are buffer overflows and format string attacks. ~ ing and dynamic slicing. The dynamic tainting portion of the ap-

Newsome and Song [17] present one of the first dynamic-taintproac.h is used to detect |I!egal information flows under a specific
based approaches for preventing overwrite attacks. Their approac€curity policy. Once an illegal flow has been detected, the dy-
taints any data read from a network socket. The tainted data is thefamic slicing portion of the approach is used to extract the relevant
propagated as the program executes. Finally, the approach enforcd¥rtion of the execution (i.e., the set of statements that propagated
the security of a program by checking that tainted data is not used aipformation along the illegal flow). This set of statements can tht_an
the target of a jump (including function return addresses), a formatP€ used to reduce the amount of code that needs to be examined
string, or a system-call argument. Several other techniques for deWhen debugging the insecure flow.
tecting overwrite attacks were developed at a similar or later time.3 5 Additional Related Work
In particular, Suh and colleagues [22] and Kong and colleagues [8] . o .
propose hardware-based approaches. More recent workdesstb Two.addltlonal areas .01.‘ relatgd.work are static |nformqtlon-flow
on reducing the overhead of earlier approaches. LIFT [21], in par-&nalysis and dynamic slicinGtatic information-flow analysie.g.,
ticular, attempts to reduce the overhead of propagating taint infor-[16, 20]) is the static counterpart of dynamic taint analysis. As it is
mation by using a direct mapping between memory and taint labelstypically the case, static information-flow analysis has the advan-

It also proposes several optimizations that eliminate unnecessar{?d€ of computing conservative estimates of the information-flow
taint propagation operations. within a program, whereas dynamic tainting can only identify flows

Dynamic tainting has also been used to pre®@t. injection at- that actua_tlly_ occur ir_1 one of the ob_served executions. On the_ flip
tacks in which attackers submit maliciously-crafted strings to aweb Side, static information-flow analysis can produce many spurious
application to access its underlying database. Most dynamic-tainf€Sults in the presence of constructs such as loops and aliases, due
based approaches against SQL injection also operate by tainting anl ImPrecision. Which approach is preferable depends on the spe-
tracking unsafe data (i.e., input from the user). Then, beforeyque Cific application considered. o _
string is sent to the database, it is checked to ensure that no tainted Another related approach dynamic slicinge.g., [1, 9]), which
data was used to create the string or specific parts of it. Nguyen_comp.utes a conservative estlmgte of all statements in a program that
Tuong and colleagues [18] propose an instance of this approach foR'® €ither affected by or affecting the value of a variable at a spe-
PHP-based web applications, whereas Haldar, Chandra, and Frarfic program point and for a given execution. Dynamic slicing and

[6], Pietraszek and Berghe [19], and Halfond and Orso [7] targetdynamic taint analysis are similar in nature, but compute slightly
applications written in Java. different kinds of information. The former identifies the subset of

the statements in a program that affect (or are affected by) one or

3.3 Information-flow Policies Enforcement more data values. The latter focuses on computing which subset of

o . the data in the program is affected by a given set of data.
Dynamic tainting has also been successfully used in the context

of information-flow security to enforce information-flow policies.

Such policies define limits on how information is used within a sys- 4. O_UR APPROAC_H . )

tem. An example of information-flow security policy in the physical !N this section, we describe our generic approach for dynamic
world is a military system where classified information is forbid- taint analysis. More precisely, we provide (1) a general descrip-
den to be transferred to individuals without the appropriate clear-tion of our framework, (2) details on the instantiation of the general
ance level. Dynamic tainting is an ideal technique for enforcing @PProach for x86 binaries, and (3) a description of the tool that im-
information-flow policies in a software system; different taint mark- Plements the framework.

ings can be used to label sensitive information and then the analysi

can check whether marked data reaches parts of the system that it%'l General Framework

not supposed to reach according to the policies in place.

Also in this case, there are several variations of this general ap
proach. The RIFLE system [23] provides architecture-based sup
port for information security by tracking explicit and implicit infor-
mation flows. Chow and colleagues [3] preseniNT BOCHS, a
simulator that can track tainted data through an entire system, in-_
cluding hardware, operating system, and applications. Using theirTaint SourcesTaint sourcesare a description of program data
system, they investigate the data lifetime of sensitive information (memory locations) that should be initialized with taint markings.
in several commonly-used applications. Finally, McCamant and Memory locations can be of different types, including variable names,
Ernst [14] present a technique that produces an upper bound of théunction-return values, and data read from and I/O stream such as a

There are three dimensions that characterize dynamic taint anal-
ysis: taint sources, propagation policy, and taint sinks. Because dif-
ferent dynamic taint analyses can be expressed by defining the anal-
ysis along these three dimensions, we defined our general frame-
work in terms of these dimensions.

amount of information leaked by a program at runtime. file or a network connection. Our framework allows for specifying
memory locations as follows:
3.4 Software Testing and Debugging Variables and memory offsets. Users can indicate that a memory

Outside of the security field, researchers have started to investi- area should be tainted by specifying the corresponding variable
gate the use of dynamic taint analysis in the areas of software test- name and scope (i.e., global or local to a procedure). For exam-
ing and debugging. Th€OVET system [11] uses dynamic taint- ple, a user could specify variablein proceduref oo as a taint
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source. This would cause the area of memory that corresponds explicit propagation of taint markings, which occurs through di-

tov to be tainted during execution. Users can also directly spec-
ify a specific area of memory in terms of its offset from the base
address of the program.

Data returned from a specific function. Users can indicate that a
function’s return value must be tainted by simply specifying the
name of the function. For example, imagine an application that
reads data from a database using a function “submitQuery”; a
user would be able to taint all data originating from the database
by specifying “submitQuery” as a source.

Data from a type of I/0 stream. To indicate that data read from
a particular type of stream must be tainted, users only need to

rect or transitive value assignments (see example in Figure 1).
The latter also accounts for implicit propagation, which occurs
due to control-flow dependences (see examples in Figure 2). Based
on the application they are targeting, users can specify which
of these two schemes to use. Note that data- and control-flow
based propagation induces a higher runtime overhead than propa-
gation based on data-flow only, as shown in Section 5.1.2. There-
fore, if a technique can be implemented without considering im-
plicit propagation, it can be more efficient. Using our frame-
work, a user could experiment with both possibilities and assess
the trade-offs of the different solutions.

specify the stream type. Currently, our framework handles threeDefining a mapping function. Typically, the set of affecting data

types of 1/0 stream: network, filesystem, and keyboard. For ex-
ample, users could specify that they want any data coming from
the keyboard to be tainted.

Data from a specific I/O stream. Users can also specify that data
from a specific 1/0 stream must be tainted. In this case, only the
network and the filesystem, for which it makes sense to distin-
guish between different streams, are supported. To indicate the
specific stream of interest, users can specify its type, network
or filesystem, and a unique identifier (absolute path for files, IP
address or IP name and port for network streams).

In addition to specifying the specific program data to be tainted,
a taint source must also indicate how taint markings should be as-
sociated with the identified memory areas. One possibility is to use
a single taint mark. Many existing dynamic taint analyses, includ-

contains several data items with multiple taint markings. In these
cases, the default behavior of our framework is to taint the pro-
duced data with a set containing the union of all such mark-
ings. However, there are many ways in which taint markings can
be propagated depending on the specific application of dynamic
tainting considered. For example, one technique may need to
keep a set of distinct taint markings for each data item, another
technique may merge markings based on some predefined sub-
sume hierarchy among them, and yet another technique may gen-
erate new markings for the produced data based on the specific
set of markings of the affecting data. Currently, we allow users to
define these custom mapping functions by redefining the proce-
dure in the framework that combines the markings. Details about
the specific way in which this is accomplished in the current im-
plementation of our framework are provided in Section 4.3.

ing most of the techniques discussed in Section 3, can be imple- )
mented using a single taint marking. Other applications may needlaint Sinks.At a high level, aaint sinkis a location in the code
to discriminate between data read from different sources. An ob-Where users want to perform some check on the taint markings of
vious example are techniques for information-flow policy checking one or more memory locations. Taint sinks are characterized by
and enforcement, which may need to distinguish, for instance, befour aspects: (1) an ID, (2) a memory location, (3) a code location,
tween data coming from network hosts with different levels of trust. and (4) one or more checking operations to be performed at that
To support these applications, our framework allows for specifying code location and using the taint marking(s) associated with that
different taint marking for different sources. memory location. The ID is an integer value assigned by the user to
Additionally, for taint sources associated with 1/0 streams, our a sink or group of sinks. We explain the purpose of the IDs below,
framework lets users associate different taint markings to differentwhen discussing checking operations. Our framework provides two
data read from a given stream. In this case, users would have ténain ways to specify a sink's memory location and code location.
specify that they want to use “fresh markings” for that stream and In the first way, memory and code locations are specified inde-
specify the amount of data to be tainted with a single marking. Ourpendently. In this case, like for taint sources, users can specify vari-
framework would then assign a newly-created taint marking to eachables and memory locations using a variable’s name and scope, in-
block of data of the given size read from the specified stream anddicating a memory area directly, specifying a procedure name and
keep track of the mapping between the block number and the assathe index of the parameter (for formal parameters), or specifying
ciated taint marking. Note that, because of the way we store taintthe name of the function (for return values). The code location can
markings, we can allocate virtually any number of taint markings also be specified in different ways. Under some conditions, users
(obviously, at the cost of space overhead). can specify the code location in terms of its position in the source
code. (Because we want our framework to be able to operate at the

Propagation Policies A propagation policydescribes how taint binary level, this option is not always viable; it requires the binary
markings should be propagated during execution. Taint propagatiorf@de to contain debugging symbols.) Alternatively, users can spec-
can be expressed in general terms as follows: given a statement Ty the location in the binary code, in terms of its offset from the
the taint markings for the data produced byproduced datpare ~ base address of the program. To simplify the use of our framework,
some function iiapping functiopof the taint markings associated We also give users the possibility of indicating the entry or the exit
with the data that affects the outcomesdgffecting datd The pro- points of a procedure, specified by name, as the location of interest.
duced data can be identified unambiguously—it is the set of data, TheSecond wayccounts for scenarios where users wants to an-
stored in registers or memory, whose value is modified as a con2lyze the taint information beforeachinstruction of a given type
sequence of executing Conversely, there are different ways in (€.9., @ system call or a jump instruction). In this case, users can
which to identify affecting data and define the mapping function. SImply specify the instruction of interest, and their checking oper-
Because our goal is to provide enough flexibility in our framework, ation gets invoked right before any instruction of that type is ex-

we let users specify both aspects of a propagation policy. _ecuted._ The taint markings associated with the (_jata read _by the
instruction are passed as a parameter to the checking operation, and

Identifying affecting data. In our framework, users can specify the same sink ID gets associated to all instructions.
one of two ways of identifying affecting data: data-flow based A checking operation for a taint sink is provided as a user-specified
and data- and control-flow based. The former accounts only forfunction. The function must accept as input three parameters: an
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<f 00+00>: <function preanbl e>

<f 00+06>: cnpl  $0xa, 8( %ebp) whose value is modified during the computation). For example, the

:; Ooﬁng jl o géli <flgo(;2é> assembly instructionov takes two operands and copies the value

P gg+19>2 ern; Ox)icy ;f Og+§82) of the first operand (source) into the second operand (destination).

<f 00+21> movl  $0x2, - 16( %ebp) For another example, thedd instruction computes the sum of its

<f 00+28>: mov| $0xa, - 12( %ebp) two operands, treating both as sources, and stores the result in the

<f 00+35>: mov - 16( %ebp) , Yeax second operand, which is, thus, also a destination.

<f 00+38>: nmov Y%eax, (%esp)

<f oo+41>: cal | 0x3b <dyl d_stub_print> i ini i i

004462 oy “12(%ebp) . Feax 4.2.1 I\_/Iamtammg 'I_'amt Markl.ngs . N

<f 00+49>: nov Yeax, (%esp) Performing dynamic taint analysis involves storing taint infor-

<f 00+52>: cal 0x3b <dyl d_stub_print> mation for data items within the program being analyzed. In our

<foo+57>: I eave approach, taint markings are stored in bit vectors, which each bit

<foo+58>: ret representing a different taint marking. Using bit vectors is a stan-
Figure 3: Assembly code for the code in Figure 2(a). dard way to limit the cost of combining taint markings in the (pre-

dominant) case where the combination is defined as the union of the

ID, a memory address, and a special data structure. At runtime, thenarkings. We associate one bit vector to each x86 register and to
memory address will point to the address associated with the sinkgach tainted memory location.
and the data structure will contain the taint information (i.e., the set In our current implementation, the granularity that we consider
of taint markings) associated with that address at the code locatioror tainting is a byte. In our initial investigation, we did not find
specified. If the checking operation just needs to know the tainttainting at finer granularity, such as the bit level, to be cost effec-
information, then it would not use the second parameter. In sometive. Nevertheless, it would be fairly straightforward to modify the
cases, however, a checking function may need to access the actuapproach so that it operates at a finer granularity, if further experi-
variable or memory location (e.g., to check the taint markings asso-ences show that it is needed.
ciated with different parts of the variable, for variables longer than
one byte). To this end, our framework provides an API that can 4.2.2 Data-flow Based Taint Propagation
be useq to retrieve.taint infqrmation. The ID allqws, for instapce, Our high-level approach to data-flow based propagation consists
for sharing a checking function among different sinks and having aof two steps: given an assembly instruction, (1) identify the source
slightly different behavior for different sinks. and destination operands based on the instruction mnemonic and

For a simple example of how taint sources, propagation poli- (2) combine the taint markings associated with the source operands
cies, and taint sinks work together, consider again the code in Fig-and associate them with the destination operands. (As we explained
ure 2(a). Assume that a user of our framework is interested inabove, the way in which taint markings are combined may vary
checking whether the value of paramegeaffects in any way the based on the application, and the default behavior is to union them.)
value ofy printed at the end of functiohoo. In this case, the ~ When this general approach is applied to x86 instructions, there are
user would specify the first parameterfafo as the taint source  several problems (and opportunities) that must be considered for the
and indicate that it should be marked with a given taint marking dynamic taint analysis to be conservative and accurate. In the rest
to. The user would then select the default data- and control-flow Of this section, we discuss the most important of these aspects.
based propagation policy. The user would finally specify a taint
sink consisting of variablg at line 11, and whose associated proce- Mapping between Sources and DestinatioRs. some
dure takes as input the taint information foat line 11 and checks  x86 instructions, different subsets of the source operands affect d
whether it includes taint marking, (or simply logs that taint infor-  ferent subsets of the destination operands. For examplguk

mation for a subsequent check). instruction, which stores the value of a register on the stack, has the
L . . register to be pushed and the stack pointer as source operands, and
4.2 Instantiation for x86 Binaries the memory location indicated by the stack pointer and the stack

Although the abstract definition of dynamic taint analysis is rel- pointer itself as destination operands. Because the stack pointer is
atively straightforward, defining the details of the approach so thatdecremented by a constant value, it is not affected by the source
it is sound and accurate is considerably more complex. In this secegister, whereas the memory location where the register value is
tion, we define the instantiation of our generic framework for dy- stored is affected by both source operands. In such cases, prop-
namic taint analysis for binaries running on the x86 architecture. Inagating taint marks from all sources to all destinations would re-
the discussion, we focus mainly on the details of data- and control-sult in more markings than necessary being propagated and would
flow based propagation, which represent the core of dynamic taintntroduce unnecessary imprecision in the analysis. Our approach
analysis and are the most challenging parts of the approach. considers the semantics of the different instructions, suitably iden-

Before discussing the details of the approach, we present a brietifies which source operands affect which destination operands, and
overview and example of the x86 assembly language. Figure 3Propagates taint marks accordingly.
shows the assembly code for the code in Figure 2(a). Individual
x86 instructions consist of a mnemonic command name followed Address GeneratorsThis issue is related to the use of memory
by a variable number of operands. Operands can be registers (e.docations as operands. The x86 architecture supports several differ
Y%eax, ¥esp), literal values (e.g$0xa, $0x2), oramemoryloca-  ent addressing modes that can be used to access memory. In gen-
tion (e.g.,- 12( %ebp) , <f o0+21>). For example, the instruction eral, addressing modes are either direct, where the memory location
at addressf 00+21>, which corresponds to line 7 in the source is specified using a constant, or computed using some combination
code of Figure 2(a), copies the literal value 2 into the address atof register values and constants. For example, in instrugtica
offset- 16 relative to%ebp, which corresponds to variabe 0x15 (position<f 00+10> in Figure 3),0x15 directly specifies

For each assembly statement, the mnemonic determinesiinee  the target of the jump instruction as an offset of the current location.
operands(i.e., operands whose value is used by the statement td~or a different example, in instructiorovl $0xa, - 12( %ebp)
perform its computation) andestination operand§.e., operands  (position<f 00+28>), the target of the operation is expressed as
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the value of registe¥ebp minus12. Registers used to compute for a 16-bit sub-register, it also considers the taint markings for the
memory locations are commonly referred toaalslress generators ~ 32-bit register that contains the sub-register.
If a memory location is specified using a constant, considering

only the taint markings associated with that memory location is Constant FunctionsConstant functions are sequences of in-

safe. However, if a memory location is specified using a combi- structions that always produce the same result regardless of their

nation of registers and constants, considering the tainting of the loinput values. An example is the x86 idiom for clearing a register

cation alone is not enough; to be conservative, the taint markingge.g., %eax): xor %ax, %ax. After executing this instruc-

associated with the address generators should also be consideregbn, the%eax register always contains the value 0. There are sev-

Most dynamic tainting approaches for preventing buffer overruns eral other instances of single-instruction constant functions, such as

do not consider taint markings associated with address generatorsub %ax, %ax andnmov %ax, %ax. For these instruc-

because they can be safely discarded for that specific applicationions, the safe data-flow propagation policy of assigning to the des-

However, these approaches are not safe in general. Because oyhation operands the combination of the taint markings associated

goal is to provide a general, sound framework for taint propagation,with the source operands is safe, but can introduce considerable im-

we account for these possible sources of tainting in our approach. precision. To reduce this imprecision, we carefully studied the x86
instruction set and related manuals [5] to identify constant functions

Implicit Operands.in x86 code, not all operands can be iden- and encode their semantics into our framework.

tified by simply looking at the code. More precisely, an x86 state-

ment can havexplicit operandswhich are present in the statement, Compound Branch Instruction€ompound branch instruc-

andimplicit operandswhich are read or modified by the statement tjons are single instructions that include control flow. An example

without being explicitly present. The set of implicit operands ac- is cnov <src> <dest >, which copies the value of itssr c>

cessed by an instruction depends on the semantics oftheinstructiom)perand into its<dest > operand only if a specified bit of the

Therefore, modeling such semantics is the only way to correctlyyef | ags register is set (or unset, depending on the specific variant

account for implicit operands. For example, consider instruction of cnpv used). An imprecise propagation would always propagate

push %ax, which has the following semantics: first subtract 4 taint markings from<sr c> to <dest >, whereas a more precise

from registel%esp (stack pointer), then store the content of regis- analysis can check the relevarif | ags’s bit and propagate taint

ter %eax into the memory location stored Mesp. This instruc- markings only when appropriate.

tion involves (1) an explicit read dfeax, (2) an implicit write to

%esp, and (3) an implicit read of the memory location whose ad- 4.2.3 Control-flow Based Taint Propagation

dress IS Stofe.d ivesp. A taint analysis that does n_ot consider As discussed in Section 2, taint markings can propagate explic-

the two implicit aperandsiesp and the memory location) would itly, due to data flow, or implicitly, due to control flow. We now

not propagate taint markings associated with regiax to the present a general approach for control-flow based taint propagatio

memory Ioca_tlon on the stack and would be unsafe. . . and discuss how we instantiated the approach for x86 binaries.
This issue is especially relevant when #&f | ags registeris an

implicit operand. For example, consider instructmed %eax,
%ebx. In addition to calculating the sum of its explicit operands
(i.e., %eax and%ebx), add also implicitly defines several bits in
the%ef | ags register. In general, thief | ags register is used to

keep some “state” information about the computation. In particular, . - L
P P P and that contains two special nodesry andexit with no prede-

after the execution of most arithmetic instructions, W%ef | ags q ively. Gi ' |
register indicates the parity of the result, whether an overflow oc- CESSOrS and no SUCCESSOTS, respectively. Liven two o "

curred, the sign of the result, and whether the result was zero. Belnll‘"’:jg:f”éposé]do?””atis m (f pdotm_ m oréa_domt(m) = g‘) if
cause the value dfef | ags is used by conditional-jump instruc- a q irec ecgg S rommdhoteﬂlm Co?daln@. ; iven two rllo esn
tions, correctly propagating taint markings to #&f | ags register ~ 2hdnina n immediately postdominates m (n ipdom m

is a prerequisite for correct control-flow propagation of taint mark- " ipdom(m) = n) iff n pdomm and there is no nodesuch that
ings, as explained in Section 4.2.3, n pdomo ando pdomm. A postdominator (pdom) trefer a CFG

is a rooted tree such that (1) it has the same set of nodes as the
CFG, (2) its root is theexit node, and (3) each node immediately
postdominates its direct descendents in the tree. Finally, given two
nodesn andn in a CFG,n is control dependenanm iff (1) There

is a pathP from m to n with any nodeo in P (excludingm andn)
postdominated by, and (2)m is not postdominated by.

Background.First, we concisely introduce a few background
concepts that we need to present the approachCoAtrol Flow
Graph (CFG)is a directed graph whose nodes represent statements,
whose edges represent possible flow of control between statements,

Sub-registersFor backward compatibility, the newer 32-bit ar-
chitectures map the lower half of their 32 bit general-purpose regis-
ters to 16 bit registers available in older (16-bit) architectures. For
example, the lower 16 bits of the 32 bit regist@ax can be di-
rectly accessed as registédnx. To further complicate the picture,
each of the lower two bytes of some 32 bit registers can also be ac-G
cessed directly (e.g., bits 0-7 of registé&ax can be accessed as
register%al , and bits 8-15 can be accessed as regiéér). Al-

eneral approachThe general approach we use is similar to
other approaches presented in the literature (e.g., [13, 23]) and is

though these direct addressing modes were implements to suppogasf.d 02 t_hz_contcept of cct)_ntrol dependdenfe. Ast Wleddlscuzsed n
legacy applications, they are also used in new applications to han: ection 2, Indirect propagation occurs due to control dependences

dle smaller data types and perform string-processing operations. /petween statements. When a conditional branching statenent

dynamic tainting approach that does not account for the presence oqfefudtgs, whetther a statenf;eﬂtttrﬂay ble exfet(;]utedd,t the \:ja}:y?:bthat
directly addressable sub-registers would be unsafe; it would fail goAliectors outcome may afiect the vaue of the data modinechy
Therefore, to be conservative, the taint markings associated with

recognize (and suitably handle) the fact that, for instance, register% . . .
. i : . 's source operands must be combined and associateds¥éth
% h and%eax are overlapping. When retrieving taint markings for éi;stination op‘))erands To achieve this result, our approach keeps

a 32-bit registers, our approach also considers the taint markingt K at runti frel t taint Ki by | : taticall
for all sub-registers. Analogously, when retrieving taint markings rack atruntime of relevant taint markings by leveraging statically=
computed postdominance information, as follows.
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Instrumented .| User
Executable <_| provided
e (and libraries) [ library
Executable
(and libraries)
OJCIN©I0]0
\ pdom !
e
@ Figure 5: Overview of the DYTAN tool.
handling these issues requires dynamic updating, complex and of-
) o ten overly conservative analysis techniques [2], or additional knowl-
Figure 4: CFG and pdom tree for the code in Figure 2(a). edge about the compiler used to create the binary [4]. To simplify

our initial implementation of the approach, we are currently limit-

e When the execution reaches a conditional branching statement, o+ 1] to statically identifiable memory locations, similarly to
br, our approach (1) computes a setnt that contains the com- Masri and colleagues [13].

bination of the taint markings fdsr’'s source operands and (2)
add to a seb a pair< br, taint >.

e When the execution reachesdom(br), wherebr is a condi-
tional branching statements, it removes frSrall pairs< =,y >
such that is equal tobr.

e When a statementt is executed and is not empty, it adds, for
each pair< z,y > in S, the taint markings iry to the set of
taint markings to be combined and associatesk®destination
operands.

Specificities of x86 coderhe x86 architecture supports con-
ditional programming constructs, suchiafs statements antlor
andwhi | e loops, by means of a test-and-branch idiom: first, the
program executes a test instruction, sucle@p, which sets some

bits in the%ef | ags register; then, a conditional branch instruc-
tion is executed, whose outcome depends on the bit values in the
%ef | ags register. Because all conditional branch instructions rely
on the%ef | ags register, a propagation policy that does not ac-

Because (by definition) all of the statements control dependentcount for implicit operands cannot implement control-flow based
on a conditional branching statemeéntare on paths that start &t propagation. As discussed in Section 4.2.2, our approach consid-
and end withbr’s immediate postdominator, the approach described €r's implicit operands and suitably associates taint markings to the
above is guaranteed to conservatively propagate taint markings acZef | ags register, which enables safe data-flow and control-flow
cording to the control dependences in the program. To provide arPased dynamic tainting.
illustrative example, we use again the code in Figures 2(a) and 3, Another important aspect of the x86 instruction set is the differ-
whose CFG and postdominator tree are shown in Figure 4. Weence between direct and indirect branches. Direct branchesyspecif
assume that procedufeno is called asf 00( 100) and that pa-  their target address as a constant memory address, while indirect
rametera at line 1 is tainted with taint marking,. For ease of  branchesuse aregister. For example, instrugtigm 0x8048345
presentation, we discuss the example at the source-code level. i a direct branch to addre8x8048345, whereag np ( %eax)

At f oo’s entryl setS is empty When |ine 3 is executed, our ap_ iS an indirect branCh to the addl’eSS Stored in regmx. For dl'
proach would recognize this as a conditional branching statementect conditional branches, which do not have source operands, it is
and add a paik 7, {t.} > to S because, is the (only) taint mark- enough to consider the taint markings associated witbéie ags
ing associated with the branch’s source operands. The next line extedister. Indirect conditional branches, however, have soureengs.
ecuted is line 4. Becausgis not empty, the taint markings i are The taint markings for such operands must be included in the set of

combined and associated with the statement’s destination operand&int markings that are propagated through control-flow (i.e., they
In this case, there is only one setdnand the resulting set of mark- Must be added to the set of taint markings added taSsetien
ings is {t }, which gets associated with variabte Next, line 9 the corres_pondmg indirect conditional branch is executed). Our ap-
is executed, which correspondsitalom (7). Pair< 7,{t,} >is  Proach suitably handles both cases.
therefore removed fron¥, which becomes empty. Atoo’s exit,
x’s set of taint markings i$t. }, which is the correct result. 4.3 The Tool: DYTAN

To account for situations like the one shown in Figure 2(b), where  We implemented our framework in a prototype tool calted
the above approach would miss the fact thatvalue depends on  TAN (DYnamic Taint ANalyzer). Figure 5 provides an overview of
a’s value, we leverage a solution proposed in previous work (e.g.,DYTAN's mode of operation. To provide a friendly interface for the
[13, 15]) of identifying each conditional instruction such that dif- tool, we give users the ability to specify dynamic taint techniques
ferent memory locations are defined along the two branches of thehrough aconfigurationfile in XML format. The user-provided
instruction. For each such instruction, our approach adds, at instrueonfiguration file specifies the kind of dynamic taint analysis to be
mentation time, spurious definitions that make the set of memoryperformed in terms of taint sources, propagation policies, and taint
locations defined along the two branches equal. For the code irsinks. Based on this configurationy TAN instruments the x86x-
Figure 2(b), this would be analogous to add a statement x on ecutableon the fly to produce amstrumented executabl&o per-
the (now empty) else branch of the statement at line 4. form instrumentation on the flpyTAN leverages theiN dynamic

The presented approach is safe under the assumption that we canstrumentation framework [12], which is well supported and of-
analyze the binary code on which we are performing dynamic taint-fers a rich APIs for manipulating x86 binaries. Performing control-
ing and conservatively (1) build CFGs for the procedures in the codeflow based taint propagation requir@sTAN to computeCFGs and
and (2) identify which memory locations are accessed by each infpdominformation at code loading time. To reduce the overhead,
struction. Unfortunately, this assumption is often unmet due to thethis information is computed only once per binary object and then
inherent difficulties in analyzing binary code, especially in the pres- stored along with a checksum of the object. When a binary object
ence of indirect branches and indirect memory accesses. Suitablis loaded,DYTAN checks whether there are CFGs and postdomi-
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nance information stored for that object and with the right checksung)(;tu""rnc_e‘;onfig>

(the object could have been updated after the information had been <source typex’ network '>
stored). If so, it loads the information. Otherwise, it computes and <hostx</host>
stores it. While running, the instrumented program needs to access </<Sg3;tc>;</ port>
theDYTAN library, which provides taint-propagation functionality, ~;sources
and theuser-provided library which contains the checking opera- <propagation
tions associated with taint sinks and, possibly, custom operations <dataflow-true</dataflow-
. . . . . . <controlflow>false</controlflow>
for combining taint markings, as discussed in Section 4.1. We pro-./ propagation
vide an example abYTAN's usage in Section 5.1, where we use the <sinks>
tool to implement two different techniques based on dynamic-taint <sink>

! <id>36</id>
analy5|s. . <location typeZ’ instruction >
Although we attempt to expose most of the framework’s options <instruction='ret'’' />

through the XML configuration file, we also support power users e o

that may need more flexibility than what the configuration file can ~ _,janatuction="imp " />

offer. DYTAN provides direct access to its functionality through a <action=" validate—absenceé’ />

C++ API. Using this API, users can register call back functions that </sink>

implement '_[heir cus_tom approach for marking, propage}ting, andifs;':;rficonmp

checking taint markings. To use the API, users would write a C++ . ) S

function with a predefined name that invokes the API methods to set Figure 6: SamplepyTAN configuration file.

configuration parameters and register functions in the user-provide

library. Functions that implement a specific functionality must pro-

vide a predefined signature, which letsTAN substitute them to its

internal default implementation of the corresponding functions. . : . .
We stress thabyTAN, by working at the binary level, can trans- Prppaga_tlpn p_ollcy_. A propagation policy based on data-fiow alone

parently handle external and system libraries. The tool simply in- _'S sufficient in this case.. .

struments application and library code on the fly, at code Ioadings'nks- There must be a sink for each instance of a call, return, or

%ources.The taint sources for this technique consist of any data
that is read from the network. These data should all be tainted
using a single taint marking.

time, and propagates taint markings appropriately. branch instruction. At each of these points, the target of the con-
trol transfer instruction should be checked to make sure that it
5. EMPIRICAL EVALUATION was not tainted by data read from the network.

Our empirical evaluation has two main goals: (1) assess the suit- To provide an example afYTAN's usage, Figure 6 shows how
ability of our framework for implementing different types of dy-  the informal description above would be encoded¥TAN’s con-
namic taint analyses and (2) study how the specific characteristicsiguration file. In this example, the network is the only taint source.
of the dynamic tainting approach used can affect efficiency and ac-The host andport tags allows users to indicate either a class of
curacy of the taint analysis. We state these goals in terms of the tWQ:onnections or an individual connection, with*being a wildcard
following research questions: that matches any host or port. Because no specific taint marking is

RQ1: Can we implement existing dynamic taint analyses with specified,oyTaN would follow its default behavior and use a sin-
limited effort using our framework? gle taint marking. Therefore, according to the configuration, any

RQ2: To what extent the way information flow is handled affects gata coming from any network connection would be tainted with a
the results and performance of taint analysis? generic taint marking. The propagation section specifies that only

We firstinvestigate these two research questions, and then presegfata-flow based propagation should be used. Finally, the sink sec-
a small case study in which we measured the performance of ougjgn specifies that the checking operation, functian i dat e- ab-
tool in terms of time and space overhead. sence, should be performed right before any of the listed instruc-

: tions (the list should contain all control-transfer instructions).
5.1 Research Questlon 1 To complete the implementation of the approach, we added to the

To answer RQ1, we need to demonstrate thatan can be used  yser-provided library an implementationvd! i dat e- absence
to implement different dynamic tainting techniques with a limited that checks whether the set of taint markings passed as a parameter
amount of effort. To this end, we selected two techniques previouslyjs empty and terminates otherwise; when the check fails, it means
presented in the literature and implemented them usiiiN . To that data from the network is determining the target of a control-

techniques, we partially replicated or emulated the empirical stud-

ies used to evaluate such techniques (which also serves as a sanigetection of SQL injectionThe second technique that we re-

check forDYTAN). implemented is a technique against SQL-injection proposed by Hal-
5.1.1 Implemented Techniques fond and Orso [7]. Itis based on (1) identifying trusted data in a web

application (in most cases corresponding to hard-coded strings), (2)
Prevention of overwrite attackhe first technique thatwe  tainting such data, and (3) checking that all sensitive parts of the
re-implemented is the technique for preventing overwrite attacksSQL queries generated by the application (i.e., everything except
presented in [17] and [21] and summarized in Section 3.2. We chosestring and numeric literals) contain only tainted data. Because a
this technique because it is well known, clearly defined, has beertaint marking indicates trusted, rather than untrusted, data, this tech-
implemented several times, and has been evaluated against a seique is called positive tainting. We chose this technique because
of freely-available attack benchmarks, which allows us to replicateit is different in nature from the first one we selected and because
the original studies and, thus, assess how well our implementatiorit involves a more complicated dynamic taint analysis. For the sake
reflects the original technique. Within our framework, the technique of space, we do not show the XML configuration for this technique
can be specified as follows: and just summarize its definition within our framework.
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Sources. The taint sources consist of all hard-coded strings in the Table 1: DYTAN SQL injection false positive results

application, which should be tainted with a marking indicating Subject # Attacks Successful Attacks
complete trust. In addition, developers can specify additional DYTAN WASP
markings to indicate, for instance, trusted data read from a file events 6209 0 0

checkers 4431 0 0

that should be treated in a specific way. For the study, we only 4 - _
Subject | # Legitimate Accesse False Positives

considered hard-coded strings and specified them as memory lo- OYTAN WASP
cat|0n§ in the_blnary codg. _ _ _ SVenis 500 ) 0
Propagation policy. Also this technique is only concerned with checkers 1359 0 0
taint markings propagated through data flow. More precisely, the
original definition of the technique focuses on a specific subset . .
of data-flow propagation and only propagates taint markings as- 5.1.3 Discussion of the Results
sociated to strings and that occur through string operations. We Overall, the effort required to implement the two techniques us-
simply used the standard data-flow based propagation providedng DYTAN was fairly limited. Implementing the overwrite attack
by DYTAN, which can conservatively propagate the taint mark- prevention technique took less than an hour. The only actual code
ings associated with the hard-coded strings. we had to write was the checking operation associated with the taint
Sinks. We need a sink for each database access point (i.e., point§inks, which is a simple one. Implementing the approach against
in the code where a query is submitted to a database through QL injection was more complex. The most difficult parts were
call to a specific function). The code location of the sink is the adapting and integrating the (existing) checking operation into the
access point itself, and the variable of interest is the parameteframework and finding a way to specify taint sources. The overall
that contains the query about to be submitted to the databasémplementation time was still less than a day of work.
The checking operation consists of parsing the query and making We are well aware that these results are preliminary in nature and
sure that every character composing a SQL keyword or operatohigmy qualitative, and that there are many threats to their validity
has a trust marking. If developers specified custom sources ofecause the users of the framework were also the ones who devel-
trusted data, the checking function could be extended to handleoped it. More extensive studies with external users are needed to
data that contains these additional trust markings. address these threats and provide more confidence in the results.
Nevertheless, we believe that the results for this first set of stud-
It is worth noting that the checking function for this technique ies are promising, especially considering that our implementations
is more complex than the one for checking code overwrites. It were able to perform successfully on reproductions and emulations
first uses an SQL parser on the string about to be submitted to thef the studies used to evaluate the original techniques.
database (passed as a parametenrtaaN) to identify tokens corre- )
sponding to SQL operators, keywords, and literals. Then, it checksd.2 ~Research Question 2
the taint markings associated with the characters in the non-literal The goal of this part of the evaluation is to investigate the effects
tokens. We were able to integrate the checking function from thethat imprecision can have on the results of taint analysis. Because
original wAasP tool into our implementation of the technique by (1) more conservative taint-propagation approaches are typically also
writing a wrapper around the original function that accepted the more expensive, it is important to assess whether the additional cost
right parameters and (2) specifying the wrapper as the checking opinvolves comparable benefits in terms of accuracy of the results. For
eration for the sinks imYTAN’s configuration file. some applications, unsafe results may be acceptable if they come at
. . a much lower cost in terms of overhead imposed by the analysis.
5.1.2  Evaluating the Two Techniques To investigate this issue, we performed dynamic taint analysis on
To provide some confidence that the reimplementation of thetwo subjects using approaches with different degrees of conserva-
two selected techniques generated by instantiating our frameworkiveness and compared the results obtained with the different ap-
is faithful, we partially replicated the studies performed to vali- proaches. More precisely, we considered the following approaches:
date the original techniques. For the technique against overwrite
attacks, we used the same benchmark suite developed by WilancF & DF is the approach corresponding to the control- and data-
der [24] and used in [21]. The benchmark consists of 18 different  flow based propagation policy supported in our framework.

overwrite attacks that use a variety of exploits, including heap andpr Fy| corresponds to the data-flow based propagation policy sup-
stack overflows. Both our implementation and LIFT were able to  horted in our framework. It is conservative with respect to taint

prevent all 18 attacks. While not surprising, these results show that propagation that occurs through data flow, but disregards the ef-
DYTAN allowed us to accurately implement, with low effort (see  tacts of control dependences.
Section 5.1.3), the original technique. )
-~ - S DF no IM refer -fl nly pr nth n n-
For the technique against SQL injection, we could not reproduce 0 efers to a data-flow only propagation that does not co

the studies performed by the authors because the original imple- sider the effects of implicit operands (see S_ectlon 4.2.2).

mentation of the technique works GiSP servlets, whereas our im- DF no AG refers to a data-flow only propagation tha_t does not con-

plementation works on binaries. Therefore, we emulated the study S|d_er the. effects of address geperators (sge Section 4.2.2).

by extracting several query-building sequences from the servietd?F Direct is the least conservative of the five approaches. It ac-

used as subjects in [7] and converting them to equivalent C code Ccounts only for taint propagation that occurs due to data flow

that takes as input the same URLS used in the original study. !nvglvmg only explicit operands (i.e., it disregards the effects of
Table 1 shows the results of our implementation compared with ~ indirect operands and address generators).

the original results, in terms of number of attacks stopped and num-

ber of false positives generated. Also in this case, our implemen- Throughout the paper, we provided various examples that showed

tation of the technique based oNTAN achieved the same level of how disregarding the effects of some code constructs could lead to

success at Stopping SQL injection attacks as the Originaj approachlpss of informatipn and,- thUS, to unsafe resultS._ To estimate the en-
tity of such loss in practice, we used two real, widely-used software

subjects: FREFOX (ht t p: / / www. nozi | | a. cont fi ref ox/),aweb
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100%

SCF & DF of implicit operands is very limited. Our initial examination of the
90% 1 o binary code of the t bjects and of th tion | tion-

[71DF Full y code of the two subjects and of the propagation logs option
80% 1 | | | EDFnoIM ally produced bypYyTAN confirms this explanation.

M DF no AG Overall, the results provide a clear indication that disregarding
70% - V7 i~ HDF Direct some causes of taint propagation can have significant repercussions

on the results of dynamic taint analysis and, therefore, on any ap-
plication that relies on these results. Whereas for some applications
the effect could be irrelevant, in other cases it may make the ap-
proach unsafe. Our framework, besides allowing for quickly im-
plementing different dynamic tainting analyses, also lets users ex-
periment with different variations of a specific technique and assess
their relative effectiveness. When satisfied with the results for one
variation, users could then keep using that instance of the technique
or implement an ad-hoc, optimized version of the analysis with the
same characteristics.

Firefox (1 page) Firefox (3 pages) Gzip 5.3 Performance of the Tool

Figure 7: Tainting results for different propagations. To assess the time and space overhead imposedDyN, we
performed a case study using agazip. We did not perform
browser which consist of 850KB of binary code without consider- the study on REFOX because its functionality is not CPU-bound,
ing shared libraries; andzip (ht t p: / / www. gzi p. org/ ), a com- which causes the overhead to be masked by free cycles in the exe-
pression tool which consist of 75KB of binary code without consid- cution. To compute time overhead, we measured the time required
ering shared libraries. We used TAN to implement a straightfor-  to compress a file witkezip for a normal execution and while per-
ward dynamic taint analysis tool and ran it on the two subjects. Theforming dynamic taint analysis. We performed the same taint anal-
tool taints the programs’ inputs (data from the network fore= ysis used for our second research question, but considered only the
Fox and files to be compressed ferziP) and dumps the taint in-  two standard propagation policies provided thyTAN: data-flow
formation for the whole memory at the end of the execution. We based and control- and data-flow based. Also in this case, we reran
generated five instances of the tool, each implementing one of thehe measurements ten times and averaged the results. The time
propagation approaches described above. overhead we measured for data-flow based propagation alone was
For FREFOX, we considered two types of executions: one in approximately 30x, whereas the overhead imposed by control- and
which we loaded one page and one in which we loaded three differ-data-flow based propagation was approximately 50x.

60% 1

50%

40% |

30%

20% 1

10% |

0%

ent pages. In both cases, we exitag&E-ox right after the pages To calculate the space overhead imposedlByAN, we mea-
were loaded. FogzIP, we simply considered an execution in which  sured the memory allocated ke 1P during a normal execution and
we compressed a large file. while performing dynamic taint analysis. BecausaPp is a batch

To collect the data, we ran each of the five versions of the taint-program, we used an external program that took a snapshot of the
ing tool on HREFOX andGzIP while executing them as described, memory when the compressed file being created reached a given
and measured the number of memory bytes tainted at the end of theize. As before, we averaged over ten measurements of the results.
executions. We repeated the measurement ten times and averagdthe resulting space overhead is approximately 240x.
the results. Figure 7 shows the collected measures for the three These overheads are undoubtedly high, but they are comparable
kinds of executions: IREFOX run on one page, IREFOX run on to the overheads reported in previous work on dynamic taint analy-
three pages, andzip compressing a file. For each execution type, sis (e.g., [3, 23]). One factor to keep into account is that those pre-
the figure shows the relative number of bytes tainted when each oWious techniques were ad-hoc techniques, whereas in implement-
the five taint-propagation approaches is used. 100% corresponds timg our framework, we often had to trade time and space efficiency
the number of bytes for the most conservative approach (i.e., CHor flexibility. Moreover, our current implementation ofr TAN is
& DF). To better assess the relative differences shown in the fig-unoptimized, and there is room for improvement. Currently, we

ure, consider that the total amount of memory tainted f@EFoXx have one set of taint markings for each byte; if contiguous mem-
one page, REFOX three pages, andzip is 1.2MB, 2.6MB, and ory locations have the same taint markings, as it is often the case,
2.2KB, respectively. we can associate a single bit vector to the whole memory range.

As the figure shows, there is a dramatic difference in the amountWe also anticipate being able to reduce memory consumption by
of memory tainted when using different taint-propagation approacheswitching to a more efficient storage mechanism for taint markings,
It is apparent that not considering control-flow based propagationsuch as splay trees. The current versiomofAN keeps all of the
results in a considerable loss of information, ranging from 20% to CFGs and postdominance trees for a program and related libraries in
almost 45%. The effect of implicit operands is relevant foreE memory at once; we could easily optimize the tool by only loading
Fox but almost irrelevant fogz1P, whereas not considering address graphs that are relevant for the part of code being executed. Anal-
generators has a dramatic effect in all three cases, ranging fronogously, there are several possible improvements that could speed
about 40% to more than 60% information loss. up the taint propagation and reduce time overhead, such as using

One possible explanation for the difference in the effects of im- static-analysis information to avoid propagating taint markings that
plicit operands and address generators is that address generators aould never reach a taint sink or precomputing propagation within
usually used to calculate the location of a memory access. Theremaximal basic blocks.
fore, disregarding address generators would result in many mem- In short, although we do not expect this kind of framework to
ory locations not being tainted with the generators’ taint markings. become as efficient as an optimized implementation that targets a
Conversely, the most common implicit operand is #%ef | ags specific task, we are confident that the overhead can be reduced by
register, which is read almost exclusively by conditional branch op- optimizing our implementation. Moreover, we are currently more
erations. Therefore, when control flow is not considered, theteffec interested in providing a general approach than an efficient one, and
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the overhead imposed was not a limiting factor in the preliminary

studies that we performed.

6. CONCLUSION AND FUTURE WORK

We presented our generic framework for dynamic taint analy-

(8]

sis, which provides several advantages over ad-hoc techniques and
tools for dynamic tainting. First, it is highly flexible and customiz-

able; specific taint analysis can be instantiated by simply specifying
which data should be tainted and with which taint markings, how
taint markings should be propagated during execution, and wherej10]

[9]

taint markings should be checked and how. Second, it conserva-
tively handles propagation of taint markings due to control- and
data-flow. Finally, it works at the application level and can work [11] T.Leek, G. Baker, R. Brown, M. Zhivich, and R. Lippmann.
transparently on programs that use external and system libraries.

We also presentedYTAN, a prototype tool that we developed

and that implements our framework for x86 binarie$TAN lever-
ages additional information possibly provided with the code, such

(12]

as debugging symbols, but can perform dynamic taint analysis also

on stripped binaries alone, which makes the tool widely applicable.

We usedYTAN to perform a set of preliminary studies. The first
set of studies shows howyTAN allows for implementing differ-
ent dynamic tainting approaches with limited effort. The remaining

studies illustrate how the different aspects of the taint analysis cany 4
affect its results. The studies also show the practical applicability

of DYTAN, by running it on the=i r ef ox web browser.

We have three main directions for future work. First, we will
investigate ways to improveyTAN’s efficiency. We have several
ideas of how the analysis can be made more efficient, some of which
are discussed in Section 5.3. Second, we will gather feedback from
users of the framework to assess whether our current framework 6]
needs to be extended to accommodate additional analysis (e.g., by
performing tainting at the bit, rather than the byte level). Third, we [17]
want to USeDYTAN to investigate specific applications of dynamic

tainting in the context of software testing and debugging. In partic-
ular, we already started working on a debugging technique based orE

dynamic tainting.
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